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Abstract

The security implications of adversarial examples for
neural networks have motivated the adversarial learning
community to obtain certifiable defenses against adversar-
ial attacks. These certification schemes obtain provable
lower bounds, called robustness certificates, on the level of
adversarial contamination per input sample up to which the
classifier output is accurate. However, most existing certi-
fication schemes do not exploit sparse or low-rank proper-
ties of the input data distribution, leading to certificates that
are too small, require expensive high probability computa-
tions, and are applicable to `p bounded contaminations. In
this work, we assume that our data approximately lies in a
union of low-dimensional linear subspaces, and develop a
theory of adversarial robustness for subspace-sparse clas-
sifiers. The resultant geometric understanding of the behav-
ior of our classifiers enables us to obtain norm-independent
certification regions. In other words, we can provably de-
fend against specific unrestricted adversarial attacks.

1. Motivation and Contributions
Research in adversarial learning has shown over time

that traditional neural network based classification models
are extremely prone to adversarial perturbations, which lead
to large degradations in the accuracy of classifiers. Accord-
ingly, researchers have obtained defenses against such at-
tacks, which can be classified into two broad types: empir-
ical and certified. Empirical defenses [8, 13, 14, 17] mod-
ify the training algorithm, or employ preprocessing to ob-
tain classifiers with improved performance against adver-
sarially corrupted inputs. Such defenses are empirically
observed to obtain moderate classification accuracy against
attacks known in the literature, but do not provide a the-
oretical guarantee of performance under attack. Certified
defenses [1, 2, 6, 10, 18] remedy this by providing provable
lower bounds on their certified accuracy under any attack in
a specific attack model, which specifies the way the adver-
sary is allowed to modify the input.

In this work, we advocate for explicitly modelling the

input data distribution while designing classifiers as well as
their associated certification schemes. We work in a setting
where our data distribution is supported near a union of low-
dimensional linear subspaces. In this setting, we demon-
strate that explicitly using the knowledge of the data distri-
bution enables us to formulate classifiers that are inherently
robust, without the need of expensive post-processing, like
randomized smoothing [2]. We also demonstrate that the
resultant certified regions have clear geometric representa-
tions, leading to clear and efficient certification algorithms,
in contrast to the intricate schemes used by existing meth-
ods, like convex-relaxation-based approaches [16]. Specifi-
cally, we make two contributions in this work.

First, in the on-subspace case, our data domain X is
exactly a union of low-dimensional linear subspaces, i.e.,
S1, S2, . . . , Sk, and the attack model is unbounded, but con-
strained to perturbations lying on the subspaces. We con-
struct a robust classifier and obtain its associated certifi-
cates. We demonstrate that the certified regions have a sim-
ple description as the convex conic hull of selected points
in the training data.

Second, in the out-of-subspace case, our data domain X
is a union of low-dimensional linear subspaces perturbed by
additive `2 bounded noise Bε, and the attack model (which
is still unbounded) now includes out-of-subspace perturba-
tions. We generalize the classifier obtained earlier and ob-
tain its associated certificates. We demonstrate that the cer-
tified region is now a general polyhedron, whose faces and
extreme rays are described by selected training data-points.

We note here for clarity that our certified regions are not
spherical in any `p norm, in contrast to most existing liter-
ature. Our certificates are descriptions of conical regions
in constrast to certification radii obtained by existing liter-
ature [2, 18]. Hence, our methods provably defend against
adversarial perturbations unrestricted in the `p norm. These
perturbations produce semantically meaningful images, but
are restricted to be near linear subspaces S1, . . . , Sk. Our
methods complement related work on non-isotropic certifi-
cates [4, 5, 12] which do not model the underlying data dis-
tribution.

The remainder of this short paper is organized as follows.



Sec. 2 introduces preliminaries and notation that we will
use throughout. Sec. 3 obtains a classifier and the resultant
certified regions for on-subspace attacks, followed by Sec. 4
which deals with out-of-subspace attacks. Finally, we show
some qualitative examples in Fig. 3, and conclude in Sec. 5.

2. Notation, Problem Formulation and Main
Results

In this paper, we are concerned with robust classifi-
cation for data lying near the union of low-dimensional
linear subspaces. Throughout this work, we assume
access to a training dataset of M clean data-points
(s1, y1), (s2, y2), . . . , (sM , yM ) such that for all i, the point
si lies on a union of K low-dimensional linear subspaces
S1 ∪ S2 ∪ . . . ∪ SK . The corresponding label, given by
a labelling function yi = LABEL(si) identifies the associ-
ated linear subspace, i.e., si ∈ Syi . We will use the no-
tation S = [s1, s2, . . . , sM ] for the training-data matrix,
y = (y1, y2, . . . , yM ) for the training-labels,X for the data-
domain, and Y = {1, 2, . . . ,K} for the label domain. In
this section, we will describe the problem formulation in the
case where X is on-subspace, i.e., X = S1∪S2∪ . . .∪SK .
In Sec. 4, we will move to the case where points in the data-
domain can lie slightly outside their linear subspaces.

Data-Space Restriction. The astute reader would notice
that since the label y is determined exactly given the sub-
space that a data point x ∈ X belongs to, the setup is not
well defined when x belongs to the intersection of multiple
subspaces. To remedy this, we remove all pairwise sub-
space intersections from X , to obtain the restricted space
X̄ = ∪k∈[K]S̄k, where the restricted subspaces are defined
as S̄k = Sk \ (∪k′ 6=kSk ∩ Sk′).

Problem Formulation. Given {(si, yi) ∈ X̄ × Y}Mi=1 the
problem that we aim to solve in this paper, is to predict the
label y for an arbitrary data-point x ∈ X̄ , in a fashion robust
to arbitrary additive perturbations to x. Before proceeding,
we ponder over the cases when this goal is achievable.

Robustness. Can we expect a classifier f : X̄ → Y
to be robust to an arbitrary additive perturbation v, i.e.,
f(x + v) = f(x)? No, firstly because the data-domain
X̄ consists of low-dimensional linear subspaces, and it
might be possible that x′ = x + v 6∈ X̄ for an arbi-
trary v, implying that f is undefined at the perturbed point
x′. Secondly, for a valid adversarial attack, the true la-
bel must also remain unchanged after a perturbation, i.e.,
LABEL(x + v) = LABEL(x). This is akin to saying that
a perturbation should not be so strong as to change an im-
age of a cat to that of a dog, i.e., the perturbed image must
remain on-subspace. In other words, we obtain the attack
model at x as V (x) = S̄LABEL(x) − x.

The above attack model ensures that for all x ∈ X̄ , we
have (a) x+v ∈ X̄ and (b) LABEL(x+v) = LABEL(x) for
all v ∈ V (x). Notice that this attack model is unbounded,

as there is no norm bound on the attack vector v. Addition-
ally, V (x) is also maximal, in the sense that any larger set
of additive perturbations would violate either (a) or (b).

Given the above robustness setup, we can refine our
problem formulation. Given training data S,y, our goal is
to obtain a classifier f : X̄ → Y that is (I) robust to additive
perturbations in V , i.e., f(x + v) = f(x) ∀v ∈ V (x) and
(II) accurate, i.e., f(x) = LABEL(x), for any x ∈ X .

Main Results. In our first main result, Theorem 3.1, we
construct a robust classifier g and the associated certified
regions C(x) around each x ∈ X where g is robust. In
other words,

g(x + v) = g(x) whenever x + v ∈ C(x). (1)

Notice that (1) implies that if g is accurate at x, i.e., g(x) =
y, then g is also accurate under all perturbations v such
that x + v ∈ C(x). This observation is standard in the
provable robustness literature [2], and is the standard way
certification schemes are used to provide a certified accu-
racy for a given dataset. In our second main result, Theo-
rem 4.1, we extend our data and attack models to the out-
of-subspace case, where the X is not constrained to lie per-
fectly on a union of subspaces, and the attacker can make
out-of-subspace perturbations.

3. Adversarially Robust Classification in the
On-Subspace Case

Given a data-point x ∈ X̄ , recall that our goal is to pre-
dict the label y such that x ∈ S̄y in a fashion that is robust to
perturbations within the attack model V (x). Assuming that
the training data S is diverse enough so that X̄ ⊆ range(S),
we will represent x as a linear combination of the columns
of S, i.e., x = Sc. In this way, we hope to recover the cor-
rect subspace from the labels yi associated with the indices
i in the support of c, defined as supp(c) = {i : ci 6= 0}.

The problem now reduces to how to obtain c such that
x = Sc and the true subspace Sy can be recovered from
supp(c). Following the sparse-subspace classification lit-
erature we expect that the representation of x by a small
number of columns of S would select columns belonging to
Sy . This can be relaxed to an optimization program,

min
c
‖c‖1 sub. to x = Sc. (2)

(2) is known as the primal form of the Basis-Pursuit prob-
lem, and has been studied under a variety of conditions on
S in the sparse representation and subspace clustering liter-
ature [3, 7, 9, 11, 15, 19]. We pause to understand the impli-
cations of such conditions for our problem.

Given an optimal solution c∗(x) of Problem (2), how can
we accurately predict the label y? One ideal situation could
be that all columns in the support predict the same label, i.e.,



yi is identical for all i ∈ supp(c∗(x)). Indeed, this ideal
case is well studied, and is ensured by necessary [9] and
sufficient [11,15,19] conditions on the geometry of the sub-
spaces S1, . . . , SK . Another situation could be that the ma-
jority of the columns in the support predict the correct label,
i.e., Majority({yi : i ∈ supp(c∗(x))}) leads to accurate
prediction. In what follows, we obtain robustness guaran-
tees which work for any such aggregation function which
can determine a single label from the support. Hence, our
results can guarantee accurate, robust prediction even when
classical conditions are not satisfied.

Notice that there can be multiple solutions to Problem
(2), with different supports. We found that this ambiguity
causes difficulties in obtaining robustness certificates based
on the support. To have a better control on the support of
the solution, we turn to the dual problem for (2),

max
d
〈x,d〉 sub. to T>d ≤ 1, (3)

where T is defined as the matrix containing the data-points
and their negatives T = [S,−S]. We will now show that the
set of active constraints of the dual solution (3) is robust.

s1

−s1

d2

Figure 1. Geometry of the on-subspace dual problem (3).
s1, s2, s3 are the data-points. For all x′ in the red shaded cone,
Theorem 3.1 shows that the (minimal) set of active constraints are
identical and equal to that at d∗(x). In other words, the dual clas-
sifier has the red cone as the unbounded certificate at x.

Given a dual vector d, we define the active constraint set
B as B(d) = {i : 〈t>i ,d〉 = 1}. We denote the set of opti-
mal solutions of the dual problem by D∗(x). The minimal
active constraint set at x, denoted by A(x), is now defined
to be the columns of T that are active at all d∗ ∈ D∗(x),
i.e., A(x) =

⋂
d∗∈D∗(x)B(d∗). We pause to understand

the set A(x) by going back to Fig. 1. Whenever x′ is in
the interior of the red cone, the set D∗(x′) has a single ele-

ment, which is the vertex denoted in Fig. 1 by d1. In such a
case, the intersection in A(x) does not play any role, and
set A(x′) is simply the data-points t1, t2 contributing to
the vertex d1. However, consider x′ = s2. Here, the set
D∗(s2) consists of the entire face of K◦ that contains s2.
Specifically, d1,d2 ∈ D∗(s2). For d1, we have the active
constraints B(d1) = {t1, t2}, whereas for d2, we have the
active constraints B(d2) = {t2, t3}. In this case, the inter-
section in A(x) ensures that only the relevant data-point t2
remains in the intersection, thus ensuring that the minimal
set of constraints A(s2) is robust. With this understanding,
we now have the following theorem showing that the mini-
mal active set of constraints is robust.

Theorem 3.1. The minimal active constraint set A(x) is
robust, i.e.,A(x′) = A(x) for all x′ ∈ C(x) where the cone

C(x) is defined as C(x) =
{∑

ti∈A(x) αiti : αi > 0
}

The above result demonstrates that the minimal active
constraint set A(x) is robust in a certified region C(x)
around any point x. This shows that the following dual clas-
sifier is certified to be robust around any point x:

g(x) = AGGREGATE({yi : ti ∈ A(x)}), (4)

where AGGREGATE is any function that takes a set of la-
bels and outputs a single label, following some aggregation
scheme, e.g, predict the majority label.

Implications. Having obtained a certifiably robust clas-
sifier g, we pause to understand some implications of the
theory developed so far. We observe that the certified re-
gions in Theorem 3.1 are unbounded, i.e., there exist direc-
tions in the attack model V where the attacker can make un-
bounded additive perturbations, but still they would be un-
able to change the label predicted by g. This is in stark con-
trast to the `p bounded certified regions that can be obtained
by most existing work on certification schemes. This is a
demonstration of the power of modelling low-dimensional
structure while constructing robust classifiers.

4. Adversarially Robust Classification in the
Out-of-Subspace Case

In this section, we generalize the data model X to toler-
ate `2 bounded perturbations and similarly the attack model
to out-of-subspace attacks. We construct the dual classifier
as earlier and then provide certificates on its robustness.

Our data domain X ε will be the union of K low-
dimensional linear subspaces perturbed by bounded `2
noise, as x = s + n where s ∈ S1 ∪ S2 ∪ . . . ∪ SK ,
n ∈ Bε = {‖n‖2 ≤ ε}. The label y ∈ Y would be given by
the subspace that s belongs to, such that s ∈ Sy .

Data-Space Restriction. Similar to Sec. 3, we to ensure
that any data-point x can be unambiguously labelled, we



will define the restricted space by removing fat intersections
as X̄ ε = ∪k∈[K]S̄

ε
k, where S̄εi = (Si + Bε) \ (∪j 6=i((Si +

Bε) ∩ (Sj +Bε))).
Robustness. We now seek robustness to additive, out-

of-subspace perturbations v lying in the unbounded attack
model V ε(x) = S̄εLABEL(x) − x.

Recall that we assume access to a clean training data-
set S, and our goal is to obtain an accurate classifier
f : X̄ ε → Y whose predictions are robust to the attack
model V ε. Given an out-of-subspace data-point x ∈ X̄ ε,
we propose to construct our robust classifier by obtain-
ing c such that the on-subspace counterpart s can be rep-
resented as a linear combination of a small number of
columns of S, i.e., x = Sc + n. This can be obtained as,
minc ‖c‖1 sub. to ‖x− Sc‖2 ≤ ε, whose dual is

d∗λ(x) =

(
arg min

d
‖λx− d‖2 sub. to T>d ≤ 1

)
. (5)

As done earlier, we define the set of active constraints as
Aλ(x) = {ti : 〈ti,d∗λ(x)〉 = 1}. Note that Aλ(x) is a
much simpler definition thanA(x) as the set of optimal dual
solutions now has a single element. Geometrically, Aλ(x)
identifies the face of K◦ which contains the projection of
λx, if Aλ(x) is non-empty. Otherwise, if Aλ(x) is empty,
then λx lies inside the polyhedron K◦.

s1

◦

d
∗

λ3
(x)

Figure 2. Geometry of the out-of-subspace dual problem (5). At
λ = λ1, the point λ1x lies in the interior of K◦. Hence, S(x)
is empty and supp(c∗(x)) is also empty. As λ increases, a non-
empty support is obtained for the first time at λ = 1/γK◦(x). For
all λ2x in the red shaded polyhedron, the projection d∗λ2

(x) =
ProjK◦(λ2x) lies on the face F . As λ increases further we reach
the green polyhedron. Further increases in λ do not change the
dual solution, which will always remain at the vertex d∗λ3

(x).
Thus, depending on λ, the dual classifier enjoys the red or green
region as the unbounded certificate for the data-point x.

From Fig. 2, we can see visually that whenever x,x′ both
lie in the same shaded polyhedron (red or green), their pro-
jections would lie on the same face of K◦. This is shown
formally in Theorem 4.1.

Theorem 4.1. The set of active constraints Aλ is robust,
i.e., Aλ(x′) = Aλ(x) for all λx′ ∈ C(x), where the poly-
hedron C(x) is defined as C(x) = F (x) + V (x), with
F ⊆ K◦ being a facet of the polyhedron K◦ that x or-
thogonally projects to, and V being the cone generated by
the constraints active at (i.e., normal to) F .

The above theorem shows that the following dual classi-
fier is certified to be robust,

gλ(x) = AGGREGATE({yi : ti ∈ Aλ(x)}). (6)

Theorem 4.1 then gives us a region C(x) around x where
the output of gλ does not change.

Figure 3. Top Row: Example showing our unrestricted certificates.
We show x+ αv for some v ∈ C(x), where ‖x‖2 = ‖v‖2 = 1.
We are able to certify g(x + αv) = 2 for a relative perturbation
norm α much larger than existing methods. Bottom Rows: We
train a standard neural network for classifying MNIST, and ob-
tain large `2 norm adversarial perturbations vε via Projected Gra-
dient Descent, where we also project vε to our certified regions.
This ensures that vε does not change the predicted class under our
model, i.e., gλ(x) = gλ(x + vε). Each pair of images shows
(x,ProjC(x)(x+ vε)), where vε is the adversarial example with
norm ε, Proj is the projection operator, and C(x) is our certified
region at x. The title shows the class predicted by the NN, demon-
strating that vε makes the NN misclassify x, while our method is
certified to be correct. This demonstrates our resilience to unre-
stricted, but semantically meaningful, adversarial perturbations.

5. Conclusion

In this paper, we studied the question of adversarial ro-
bustness for a classification task where the training data lies
on a union of low-dimensional linear subspaces. In this set-
ting, we constructed robust classifiers for the unbounded,
on-subspace and out-of-subspace attack models, and ob-
tained their associated robustness guarantees.
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