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Abstract

Current studies on adversarial robustness mainly focus
on aggregating local robustness results from a set of data
samples to evaluate and rank different models. However,
the local statistics may not well represent the true global
robustness of the underlying unknown data distribution. To
address this challenge, this paper makes the first attempt to
present a new framework, called GREAT Score, for global
robustness evaluation of adversarial perturbation using gen-
erative models. Formally, GREAT Score carries the physical
meaning of a global statistic capturing a mean certified
attack-proof perturbation level over all samples drawn from
a generative model. For finite-sample evaluation, we also de-
rive a probabilistic guarantee on the sample complexity and
the difference between the sample mean and the true mean.
GREAT Score has several advantages: (1) Robustness evalu-
ations using GREAT Score are efficient and scalable to large
models, by sparing the need of running adversarial attacks.
In particular, we show high correlation and significantly
reduced computation cost of GREAT Score when compared
to the attack-based model ranking on RobustBench [4]. (2)
The use of generative models facilitates the approximation
of the unknown data distribution. In our ablation study with
different generative adversarial networks (GANs), we ob-
serve consistency between global robustness evaluation and
the quality of GANs.

1. Introduction

Adversarial robustness is the study of model performance
in the worst-case scenario, which is a key element in trust-
worthy machine learning. Without further remediation, state-

of-the-art machine learning models, especially neural net-
works, are known to be overly sensitive to small human-
imperceptible perturbations to data inputs [11]. Such a prop-
erty of over sensitivity could be exploited by bad actors to
craft adversarial perturbations leading to prediction-evasive
adversarial examples.

The methodology for adversarial robustness evaluation
can be divided into two categories: attack-dependent and
attack-independent. Attack-dependent approaches aim to
devise the strongest possible attack and use it for perfor-
mance assessment. On the other hand, attack-independent
approaches aim to develop a certified or estimated score
for adversarial robustness, reflecting a quantifiable level of
attack-proof certificate.

To address the challenges including (i) lack of proper
global adversarial robustness evaluation, (ii) limitation to
white-box settings, requiring detailed knowledge about the
target model and (iii) computational inefficiency, in this
paper we present a novel attack-independent evaluation
framework called GREAT Score, which is short for global
robustness evaluation of adversarial perturbation using gen-
erative models. We tackle challenge (i) by using a generative
adversarial network (GAN) [9, 10] as a proxy of the true
unknown data distribution. Formally, GREAT score is de-
fined as the mean of a certified lower bound on minimal
adversarial perturbation over the data sampling distribution
of a GAN. For challenge (ii), our derivation of GREAT
score leads to a neat closed-form solution that only requires
data forward-passing and accessing the model outputs. Fi-
nally, for challenge (iii), the computation of GREAT score is
lightweight since each data sample only requires one forward
pass through the model to obtain the final predictions.

We highlight the main contributions of this paper as fol-



lows:

• We present GREAT Score as a novel framework for de-
riving a global statistic representative of the distribution-
wise robustness to adversarial perturbation

• Theoretically, we show that GREAT Score corresponds
to a mean certified attack-proof level of L2-norm
bounded input perturbation over the sampling distri-
bution of GANs (Theorem 2.2). We further develop a
formal probabilistic guarantee on the quality of GREAT
Score. (Theorem 1).

• We show that the model ranking of GREAT score is
highly aligned with that of the original ranking on Ro-
bustBench using Auto-Attack [5], while GREAT Score
significantly reduces the computation time.

Notations and Backgrounds All the main notations used
in the paper are summarized in Appendix A.1. We also pro-
vide related works and background introduction in Appendix
B

2. GREAT Score: Methodology and Algorithms
In this section, we start by defining the true global ro-

bustness and its certified estimate in Section 2.1. Then, we
propose using GANs to obtain a certified estimate for the true
global robustness in Section 2.2 and develop a probabilistic
guarantee on its effectiveness in finite-sample settings in
Section 2.3.

2.1. True Global Robustness and Certified Estimate

Let f = [f1, . . . , fK ] : Rd → RK denote a fixed
K-way classifier with flattened data input of dimension
d, (x, y) denote a pair of data sample x and its corre-
sponding groundtruth label y ∈ {1, . . . ,K}, P denote the
true data distribution which in practice is unknown, and
∆min(x) denote the minimal perturbation of a sample-label
pair (x, y) ∼ P causing the change of the top-1 class pre-
diction such that argmaxk∈{1,...,K} fk(x + ∆min(x)) ̸=
argmaxk∈{1,...,K} fk(x).

Definition 1 (True global robustness). The true global ro-
bustness of a classifier f with respect to a data distribution
P is defined as:

Ω(f) = Ex∼P [∆min(x)] =

∫
x∼P

∆min(x)p(x)dx (1)

Extending Definition 1, let g(x) be a local robustness
statistic. Then the corresponding global robustness estimate
is defined as

Ω̂(f) = Ex∼P [g(x)] =
∫
x∼P

g(x)p(x)dx (2)

2.2. Using GANs to Evaluate Global Robustness

Recall that a GAN takes a random vector z ∼ N (0, I)
sampled from a zero-mean isotropic Gaussian distribution
as input to generate a data sample G(z). We further denote
c as the groundtruth class of x.

We now formally define a local robustness score function
as

g (G(z)) =

√
π

2
·max{fc(G(z))− max

k∈1,...,K,k ̸=c
fk(G(z)), 0}

(3)

We further offer several insights into understanding the phys-
ical meaning of the considered local robustness score in
Appendix A.2.

Next, we use the local robustness score g defined in (3) to
formally state our theorem on establishing a certified lower
bound on the true global robustness, followed by a proof
sketch.The complete proof is given in Appendix A.3.

Theorem 1 (certified global robustness estimate). Let
f : [0, 1]d 7→ RK be a K-way classifier and let
fk(·) be the predicted likelihood of class k, with c
denoting the groundtruth class. Given a generator
G such that it generates a sample G(z) with z ∼

N (0, I). Define g (G(z)) =

√
π

2
· max{fc(G(z)) −

maxk∈1,...,K,k ̸=c fk(G(z)), 0}. Then the global robustness
estimate of f evaluated with L2-norm bounded perturba-
tions, defined as Ω̂(f) = Ez∼N (0,I)[g(G(z))], is a certified
lower bound of the true global robustness Ω(f) with respect
to G.

2.3. Probabilistic Guarantee on Sample Mean

As defined in Theorem 1, the global robustness estimate
Ω̂(f) = Ez∼N (0,I)[g(G(z))] is the mean of the local robust-
ness score function introduced in (3) evaluated through a
generator G and its sampling distribution. In practice, one
can use a finite number of samples {G(zi|yi)}ni=1 generated
from a conditional generator G(·|y) to estimate Ω̂(f). The
simplest estimator of Ω̂(f) is the sample mean, defined as

Ω̂S(f) =
1

n

n∑
i=1

g(G(zi|yi)) (4)

In what follows, we deliver a probabilistic guarantee on
the sample complexity to achieve ϵ difference between the
sample mean Ω̂S(f) and the true mean Ω̂(f).

Theorem 2 (probabilistic guarantee on sample mean). Let
f be a K-way classifier with its outputs bounded by [0, 1]K

and let e denote the natural base. For any ϵ, δ > 0, if the
sample size n ≥ 32e·log(2/δ)

ϵ2 , then with probability at least
1 − δ, the sample mean Ω̂S(f) is ϵ-close to the true mean
Ω̂(f). That is, |Ω̂S(f)− Ω̂(f)| ≤ ϵ.



The complete proof is given in Appendix A.4.

3. Experimental Results
3.1. Experiment Setup

Experiment Setup. We conduct our experiment on
CIFAR-10 [13] and ImageNet-1K [6] datasets(Result in Ap-
pendix). For neural network models, we use the available
models on RobustBench [3], which includes 17/5 models on
CIFAR-10/ImageNet, correspondingly. We also use several
off-the-shelf GANs trained on CIFAR-10 and ImageNet for
computing GREAT Score. All our experiments were run on
a GTX 2080 Ti GPU with 12GB RAM.

Grouping of models on RobustBench. We select all
non-trivial models (having non-zero RA) submitted to the
CIFAR-10 benchmarks of RobustBench1 and evaluated with
L2-norm perturbation with a fixed perturbation level of 0.5
using Auto-Attack. To control the variations of the submitted
models, on CIFAR-10 we divided the models into 5 groups.
Their summary is also presented in Table 2.

GREAT Score implementation. The implementation
follows Algorithm 1 with a sigmoid/softmax function ap-
plied to the logits of the CIFAR-10/ImageNet classifier.
500 samples drawn from a GAN were used for computing
GREAT Score.

Comparative methods. We compare the effectiveness of
GREAT Score in two objectives: robustness ranking (global
robustness) and per-sample perturbation. For the former, we
compare to the RA reported in RobustBench on test dataset
(named RobustBench Accuracy) as well as the RA of Auto-
Attack on the generated data samples (named AutoAttack
Accuracy). For the latter, we run L2-norm based CW attack
[2] (with learning 0.01 and 100 iterations) on each generated
data sample to find minimal adversarial perturbation and use
them to compare to our local robustness score in (3).

Evaluation metrics. For robustness ranking, we report
the Spearman’s rank correlation coefficient between two sets
of model rankings.

3.2. Local and Global Robustness Analysis

Recall from Theorem 1 that the local robustness score pro-
posed in 3 gives a certified perturbation level for generated
samples from a GAN.

Figure 1 shows the perturbation level of local GREAT
Score (equation 3) and that of corresponding CW attack per
generated sample. We can see that the local GREAT Score is
indeed a lower bound of CW attack. Figure 2 shows that by
sweeping the L2 perturbation level from 0 to 1 with a 0.05
increment for Auto-Attack. The cumulative RA of GREAT
Score at a perturbation level r means the fraction of sam-
ples having their local GREAT scores greater than r, which
gives an attack-proof guarantee that no attacks can achieve

1https://robustbench.github.io/

Figure 1. Comparison of
local GREAT Score and
CW attack in L2 pertur-
bation on CIFAR-10 with
F1 model. The x axis is
the image id. The local
GREAT Score is indeed a
lower bound.

Figure 2. Cumulative ro-
bust accuracy (RA) with
varying L2 perturbation
level using 500 samples.
Note that GREAT Score
gives a certified RA for
attack-proof robustness.

a lower RA at the same perturbation level. We see that the
trend of attack-independent certified robustness (GREAT
Score) is similar to that of empirical attacks (Auto-Attack).
Accodring to Figure 2, the GREAT score seems saturate to
zero after a certain perturbation size. The explanation is
that AutoAttack, albeit being a powerful attack, does not
guarantee there won’t exist unfound adversarial examples
when AutoAttack fails, which is a known common pitfall
of empirical rubstness evaluation. On ther other hand, our
GREAT Score provides a certified robustness guarantee that
there won’t exist any adversarial examples with perturbation
levels within the certified range. Therefore, the gap between
our certified curve versus the empirical curve of AutoAttack
does not necessarily mean our method is not useful, it could
mean that there exist undiscovered adversarial examples at
higher perturbation radii. Unless the attacks used for evalua-
tion are sound and complete, meaning that one can confirm
no adversarial examples exist if these attacks fail, we cannot
rule out the possibility of unfound adversarial examples in
these high-radii regimes, as indicated by certified robustness
analysis.

Table 1 compares the global robustness statistics of the
17 grouped CIFAR-10 models on RobustBench, in terms of
the GREAT Score and the average distortion of CW attack,
which again verifies GREAT Score is a certified lower bound
on the true global robustness (see Section 2.1 its definition),
while any attack with 100% attack success rate only gives
on upper bound on the true global robustness.

3.3. Model Ranking on CIFAR-10 and ImageNet

Following the experiment setup in Section 3.1, Table 2
compares the group-level model ranking on CIFAR-10 us-
ing GREAT Score , RobustBench , and Auto-Attack. We
find that the Spearman’s rank correlation coefficient between
GREAT Score and RobustBench is consistently higher or
same as that between GREAT Score and Auto-Attack. Fur-

https://robustbench.github.io/


Table 1. Comparison of GREAT Score v.s. minimal distortion
found by CW attack [2] on CIFAR-10. The results are averaged
over 500 generated samples.

Group Name Model Name Synthetic Data Extra Data GREAT Score CW Distortion

F1 Tiny ImageNet 0.507 0.65
F2 DDPM 0.451 0.63
F3 DDPM 0.424 0.62Fixing [15]

F4 DDPM 0.369 0.61

U1 Tiny ImageNet 0.534 0.62Uncover [12] U2 0.124 0.6

R1 Tiny ImageNet 0.583 0.59
R2 Tiny ImageNet 0.554 0.63RATIO [1]
R3 Tiny ImageNet 0.569 0.57

P1 DDPM 0.287 0.59Proxy [18] P2 DDPM 0.236 0.6

HAT [14] DDPM 0.413 0.62
AWP [19] 0.128 0.59
LIBRARY [8] 0.160 0.61
OVER [16] 0.152 0.61
DDN [17] 0.275 0.57

Others

MMA [7] 0.112 0.55

Table 2. Group-wise robustness evaluation and Spearman’s rank
correlation on CIFAR-10 using GREAT Score, RobustBench (with
test set), and Auto Attack (with generated samples).

Group
Name

Model
Name

RobustBench
Accuracy(%)

AutoAttack
Accuracy(%)

GREAT
Score

GREAT Score v.s.
RobustBench Correlation

GREAT Score v.s.
AutoAttack Correlation

F1 82.32 87.20 0.507
F2 80.42 90.60 0.451
F3 78.80 90.00 0.424Fixing

F4 75.86 87.60 0.369

1 0.2

U1 80.53 85.60 0.534Uncover U2 74.50 86.40 0.124 1 1

R1 78.79 86.20 0.583
R2 76.25 86.40 0.554RATIO
R3 72.91 85.20 0.569

0.5 0.5

P1 77.24 89.20 0.287Proxy P2 74.41 88.60 0.236 1 1

HAT 76.15 86.60 0.413
AWP 73.66 84.60 0.128
LIBRARY 69.24 82.20 0.160
OVER 67.68 81.80 0.152
DDN 66.44 79.20 0.275

Others

MMA 66.09 77.60 0.112

0.486 0.486

thermore, in 3 out of 4 groups using similar training method
(F,R,P), GREAT Score has exactly the same model ranking
as RobustBench. The results suggest that GREAT Score can
be a good alternative metric for robustness evaluation.

3.4. Run-time Analysis

As Figure 3 implies that comparing to Autoattack [5]
with ϵ = 0.5 on 500 generated samples. Our GREAT Score
achieved a significantly smaller time cost. Hence, we can
claim that the computational cost of GREAT Score method
can be very small even applied to robustness deep neural
network.

Figure 3. Run-time improvement ( GREAT Score over Auto-Attack
) on 500 generated CIFAR-10 images.

4. Conclusion

In this paper, we presented GREAT Score, a novel
and computation-efficient attack-independent metric for
global robustness evaluation against adversarial perturba-
tions. GREAT Score uses an off-the-shelf generative model
such as GANs for evaluation and enjoys theoretical guaran-
tees on its estimation of the true global robustness. Its com-
putation is lightweight and scalable because it only requires
accessing the model predictions on the generated data sam-
ples. Our extensive experimental results on CIFAR-10 and
ImageNet also verified high consistency between GREAT
Score and the attack-based model ranking on RobustBench,
demonstrating that GREAT Score can be used as an efficient
alternative for robustness benchmarks.

Limitations and Societal Impacts. One limitation could
be our framework of global adversarial robustness evaluation
using generative models is centered on L2-norm based per-
turbations. This limitation could be addressed if the Stein’s
Lemma can be extended for other Lp norms. We do not see
any ethical or negative impacts in our work.
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A. Appendix
A.1. Notations

Table 3. Main notations used in this paper

Notation Description
d dimensionality of the input vector
K number of output classes
f : Rd → RK neural network classifier
x ∈ Rd data sample
y groundtruth class label
δ ∈ Rd input perturbation
∥δ∥p Lp norm of perturbation, p ≥ 1

∆min minimum adversarial perturbation
G (conditional) generative model
z ∼ N (0, I) latent vector sampled from Gaussian distribution
g robustness score function defined in (3)
Ω(f)/Ω̂(f) true/estimated global robustness defined in Section 2.1

A.2. Physical meaning of local robustness score in
(3)

We define the minimal perturbation for altering model
prediction as ∆min(x) = 0. The intuition is that an
attacker does not need to take any action to make the
sample x evades the correct prediction by f , and there-
fore the required minimal adversarial perturbation level
is 0 (i.e., zero robustness).(i) The inner term fc(G(z)) −
maxk∈1,...,K,k ̸=c fk(G(z)) represents the gap in the likeli-
hood of model prediction between the correct class c and the
second-best class. A positive and larger value of this gap
reflects higher confidence of the correct prediction and thus
better robustness. (ii) Following (i), a negative gap means
the model is making an incorrect prediction, and thus the
outer term max{gap, 0} = 0, which corresponds to zero
robustness.

A.3. Proof of Theorem 1

In this section, we will give a detailed prove for the cer-
tified global robustness estimate in Theorem 1. The proof
contains 3 part: Derive the local robustness certificate, de-
rive the closed-form global Lipschitz constant, and prove the
proposed global robustness estimate is a lower bound on the
true global robustness.

We provide a proof sketch below:

1. We use the local robustness certificate developed in [32],
which shows an expression of a certified (attack-proof)
Lp-norm bounded perturbation for any p ≥ 1. The
certificate is a function of the gap between the best
and second-best class predictions, as well as a local
Lipschitz constant associated with the gap function.

2. We use the Stein’s Lemma [30] which states that the
mean of a measurable function integrated over a zero-
mean isotropic Gaussian distribution has a closed-form

global Lipschitz constant in the L2-norm. This result
helps avoiding the computation of local Lipschitz con-
stant in Step 1 for global robustness evaluation using
GANs

3. We use the results from Steps 1 and 2 to prove that the
proposed global robustness estimate Ω̂(f) is a lower
bound on the true global robustness Ω(f) with respect
to G.

A.3.1 Local robustness certificate In this part, we use the
local robustness certificate in [32] to show an expression for
local robustness certificate consisting of a gap function in
model output and a local Lipschitz constant. The first lemma
formally defines Lipschitz continuity and the second lemme
introduces the the local robustness certificate in [32].

Lemma 1 (Lipschitz continuity in Gradient Form ( [21])).
Let S ⊂ Rd be a convex bound closed set and let f : S→ R
be a continuously differentiable function on an open set
containing S. Then f is a Lipschitz continuous function if
the following inequality holds for any x, y ∈ S :

|f(x)− f(y)| ≤ Lq ∥x− y∥p (5)

where Lq = maxx∈S ∥∇f(x)∥q : is the corresponding Lips-
chitz constant, and ∇f(x) = ( ∂f∂x1

, ... ∂f∂xd
)⊤ is the gradient

of the function f(x), and 1/q + 1/p = 1, p ≥ 1, q ≤ ∞.

We say f is Lq-continuous in Lp norm if (5) is satisfied.

Lemma 2 (Formal guarantee on lower bound for untargeted
attack of Theorem 3.2 in [32]). Let x0 ∈ Rd and f : Rd →
RK be a multi-class classifier, and fi be the i-th output of
f . For untargeted attack, to ensure that the adversarial
examples can not be found for each class, for all δ ∈ Rd, the
lower bound of minumum distortion can be expressed by:

∥δ∥p ≤ min
j ̸=m

fm(x0)− fi(x0)

Liq
(6)

where m = argmax1≤i≤K fi(x0), 1/q + 1/p = 1, p ≥
1, q ≤ ∞, and Liq is the Lipschitz constant for the function
fm(x)− fi(x) in Lq norm.

A.3.2 Proof of closed-form global Lipschitz constant in
the L2-norm over Gaussian distribution In this part, we
present two lemmas towards developing the global Lipschitz
constant of a function smoothed by a Gaussian distribution.

Lemma 3 (Stein’s lemma( [30])). Given a soft classifier
F : Rd → P, where P is the space of probability distribu-
tions over classes. The associated smooth classifier with
parameter σ ≥ 0 is defined as:

F̄ := (F ∗ N (0, σ2I))(x) = Eδ∼N (0,σ2I)[F (x+ δ)] (7)



Then, F̄ is differentiable, and moreover,

∇F̄ =
1

σ2
Eδ∼N (0,σ2I)[δ · F (x+ δ)] (8)

In a lecture note2, Li used Stein’s Lemma [30] to prove
the following lemma:

Lemma 4 (Proof of global Lipschitz constant). Let σ ≥
0, let h : Rd → [0, 1] be measurable, and let H = h ∗

N (0, σ2I). Then H is

√
2

πσ2
– continuous in L2 norm

A.3.3 Proof of the proposed global robustness estimate
Ω̂(f) is a lower bound on the true global robustness Ω(f)
with respect to G Recall that we assume a generative
model G(·) generates a sample G(z) with z ∼ N (0, I).
Following the form of Lemma 2 (but ignoring the local
Lipschitz constant), let

g′ (G(z)) = max{fc(G(z))− max
k∈1,...,K,k ̸=c

fk(G(z)), 0}

(9)

denote the gap in the model likelihood of the correct class c
and the second-best class of a given classifier f , where the
gap is defined to be 0 if the model makes an incorrect top-1
class prediction on G(z). Then, using Lemma 4 with g′, we
define

Ez∼N (0,I)[g
′(G(z))] = g′ ∗ N (0, I) (10)

and thus Ez∼N (0,I)[g
′(G(z))] has a Lipschitz constant

√
2

π
in L2 norm. This implies that for any input perturbation δ,

|Ez∼N (0,I)[g
′(G(z) + δ)]− Ez∼N (0,I)[g

′(G(z))]| ≤

(11)√
2

π
· ∥δ∥2

(12)

and therefore

Ez∼N (0,I)[g
′(G(z) + δ)] ≥ Ez∼N (0,I)[g

′(G(z))]− (13)√
2

π
· ∥δ∥2 (14)

Note that if the right hand side of (13) is greater than zero,
this will imply the classifier attains a nontrivial positive mean
gap with respect to the generative model. This condition

holds for any δ satisfying ∥δ∥2 <

√
π

2
·Ez∼N (0,I)[g

′(G(z))].

2https://jerryzli.github.io/robust-ml-fall19/lec14.pdf

Note that by definition any minimum perturbation on G(z)

will be no smaller than

√
π

2
· Ez∼N (0,I)[g

′(G(z))] as it will

make g′(G(z)) = 0 almost surely. Therefore, by defining

g =

√
π

2
·g′, we conclude that the global robustness estimate

Ω̂(f) in (2) using the proposed local robustness score g
defined in (3) is a certified lower bound on the true global
robustness Ω(f) with respect to G.

A.4. Proof of Theorem 2

To prove Theorem 2, we first define some notations as
follows, with a slight abuse of the notation f as a generic
function in this part. For a vector of independent random
variables X = (X1..., Xn), define X

′
= (X

′

1..., X
′

n) is i.i.d.
to X, x = (x1, ..., xn) ∈ X, and the sub-exponential norms
∥·∥ψ2

for any random variable Z as

∥Z∥ψ2
= sup

p≥1

∥Z∥p√
p

(15)

Let f : Xn 7→ R. We further define the k-th centered
conditional version of f as :

fk(X) = f(X)− E[f(X)|X1, ..., Xk−1, Xk+1, ...Xn]
(16)

Lemma 5 (Concentration inequality from Theorem 3.1 in
[19]). Let f : Xn 7→ R and X = (X1, . . . , Xn) be a vector
of independent random variables with values in a space X.
Then for any t > 0 we have

Pr(f(X)− E[f(X ′)] > t) ≤ exp

 − t2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞


(17)

Recall that we aim to derive a probabilistic guarantee
on the sample mean of the local robustness score in (3)
from a K-way classifier with its outputs bounded by [0, 1]K .
Following the definition of g (for simplicity, ignoring the
constant

√
π/2), the sample mean f can be expressed as:

f(X) =
1

n

n∑
i=1

g(Xi) (18)

where Xi ∼ N (0, I).
Following the definition of (16),

fk(X) = f(X)− E[f(X)|X1, ..., Xk−1, Xk+1, ...Xn]

(19)

=
1

n
[g(Xk)− g(X

′

k)] ≤
1

n
(20)



This implies fk(X) is bounded by
1

n
, i.e., ∥fk(X)∥∞ ≤

1

n
,

and also ∥fk(X)∥ψ2
≤

1

n
.

Squaring over ∥fk(X)∥ψ2
gives

∥fk(X)∥2ψ2
≤

1

n2
(21)

As a result,∥∥∥∥∥∑
k

∥fk(X)∥2ψ2

∥∥∥∥∥
∞

≤ n ·
1

n2
=

1

n
(22)

Divide both side of (22) and multiply with
− t2

32e
gives:

− t2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

≤
− t2n

32e
(23)

Take exponential function over both side of (23) gives

exp

 − t2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

 ≤ exp

(
− t2n

32e

)
(24)

Recall Lemma5, since this bound holds on both sides of
the central mean, we rewrite it as:

Pr(|f(X)− E[f(X ′)]| > t) ≤ 2 exp (25) − t2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

 (26)

Hence to ensure that given a statistical tolerance
ϵ > 0 with δ as the maximum outage probability, i.e.,
Pr(|f(X)− E[f(X ′)|] > ϵ) ≤ δ, we have

2 · exp

 − ϵ2

32e
∥∥∥∑k ∥fk(X)∥2ψ2

∥∥∥
∞

 ≤ 2 exp

(
− ϵ2n

32e

)
≤ δ

(27)

Finally, (27) implies that: the sample complexity to reach
the (ϵ, δ) condition is n ≥ 32e·log(2/δ)

ϵ2 .
The proof is built on a concentration inequality in [19]. It

is worth noting that the bounded output assumption of the
classifier f in Theorem 2 can be easily satisfied by applying
a normalization layer at the final model output, such as
the softmax function or the element-wise sigmoid function.
In our implementation of the GREAT score sample mean
estimator, we use the element-wise sigmoid function.

Table 4. Group-wise time efficiency evaluation on CIFAR-10 using
GREAT Score and Auto Attack (with 500 generated samples).

Group
Name

Model
Name GREAT Score(Per Sample)(s) AutoAttack(Per Sample)(s)

F1 0.034 60.872
F2 0.03 61.3362
F3 0.006 10.3828Fixing

F4 0.004 4.4644

U1 0.03 59.586Uncover U2 0.03 60.746

R1 0.01 10.096
R2 0.01 10.1056RATIO
R3 0.01 6.9148

P1 0.008 10.3662Proxy P2 0.002 3.8652

HAT 0.002 4.4114
AWP 0.008 10.9826
LIBRARY 0.01 6.6462
OVER 0.004 3.5776
DDN 0.008 8.5834

Others

MMA 0.004 3.6194

A.5. Approximation Error and Sample Complexity

Figure 7 presents the sample complexity as analyzed in
Theorem 2 with varying approximation error (ϵ) and three
confidence parameters (δ) for quantifying the difference be-
tween the sample mean and the true mean for global robust-
ness estimation. As expected, smaller δ or smaller ϵ will
lead to higher sample complexity.

Figure 4. The relationship between the approximation error (ϵ) and
sample complexity in Theorem 2, with three different confidence
levels: δ = {5, 15, 25}%.

A.6. Sample Complexity and GREAT Score

Figure 5 and Figure 6 report the mean and variance of
GREAT Score with a varying number of generated data
samples using CIFAR-10 and the F1 model, ranging from
500 to 10000 with 500 increment. The results show that the
statistics of GREAT Score are quite stable even with a small
number of data samples.



Figure 5. The relation
of GREAT Score
(mean) and sample
complexity using
CIFAR-10 and F1
model.

Figure 6. The relation
of GREAT Score (vari-
ance) and sample com-
plexity using CIFAR-
10 and F1 model

Table 5. GREAT Score on CIFAR-10. The results are averaged
over 500 original test samples.

Group Name Model Name Synthetic Data Extra Data GREAT Score

F1 Tiny ImageNet 0.465
F2 DDPM 0.377
F3 DDPM 0.344Fixing [24]

F4 DDPM 0.297

U1 Tiny ImageNet 0.481Uncover [10] U2 0.109

R1 Tiny ImageNet 0.525
R2 Tiny ImageNet 0.489RATIO [1]
R3 Tiny ImageNet 0.493

P1 DDPM 0.227Proxy [29] P2 DDPM 0.177

HAT [22] DDPM 0.331
AWP [34] 0.106
LIBRARY [7] 0.127
OVER [25] 0.120
DDN [26] 0.221

Others

MMA [6] 0.08

A.7. GREAT Score evaluation on original test sam-
ples of CIFAR-10

Besides evaluating the GREAT Score on the generated
samples from GAN, we also run the evaluation process on
500 test samples of CIFAR-10. We reported the evaluated
Great score and the correlation coefficient between Robust-
bench and GREAT Score is same to generated samples.

B. Background and Related Works
Adversarial Attack and Defense. In classification tasks,

adversarial attacks aim to generate adversarial examples that
evade the correct prediction of a classifier. In principle, ad-
versarial examples can be crafted by small perturbations to a
native data sample, where the level of perturbation is mea-
sured by different Lp norms [3, 4, 31]. The procedure of
finding adversarial perturbation within a perturbation level
is often formulated as a constrained optimization problem,
which can be solved by algorithms such as projected gradient
descent (PGD) [17]. The state-of-the-art adversarial attack
is the Auto-Attack [5], which uses an ensemble of white-box
and black-box attacks. There are many methods (defenses)

to improve adversarial robustness. A popular approach is
adversarial training [17], which generates adversarial pertur-
bation during model training for improved robustness. One
common evaluation metric for adversarial robustness is ro-
bust accuracy, which is defined as the accuracy of correct
classification under adversarial attacks, evaluated on a set
of data samples. RobustBench [5] is the largest-scale stan-
darized benchmark that ranks the submitted models using
the robust accuracy against Auto-Attack on test sets from
popular image classification datasets such as CIFAR-10 and
ImageNet-1K.

Generative Adversarial Networks (GANs). Statisti-
cally speaking, let X denote the observable variable and let
Y denote the corresponding label, the learning objective for
a generative model is to model the conditional probability
distribution P (X | Y ). Among all the generative models,
GANs have gained a lot of attention in recent years due to
its capability to generate realistic high-quality images [9].
The principle of training GANs is based on the formula-
tion of a two-player zero-sum min-max game to learn the
high-dimension data distribution. During training, GANs
are composed of a generative model called the generator (G)
and a discriminative model called Discriminator (D). Given
a training dataset consisting of real-world data samples, the
generator aims at capturing the true data distribution while
the discriminator aims at discerning whether the data sam-
ples come from the generator or real data. The objective
for the generator is to reduce the divergence between the
discriminator’s outputs based on the true versus generated
samples. The objective for the discriminator is to correctly
classify the true versus fake samples. The training param-
eters for G and D are iteratively updated till convergence.
Eventually, these two players reach the Nash-equilibrium
that D is unable to further discriminate real data versus gen-
erated samples. This adversarial learning methodology aids
in obtaining high-quality generative models.

In practice, the generator G(·) takes a random vector
z (i.e., a latent code) as input, which is generated from
an zero-mean isotropic Gaussian distribution denoted as
z ∼ N (0, I), where I means an identity matrix. Conditional
GANs refer to the conditional generator G(·|Y ) given a
class label Y . In our proposed framework, we use off-the-
shelf conditional GANs that are publicly available as our
generative models.

Formal Local Robustness Guarantee and Estimation.
Given a data sample x, a formal local robustness guaran-
tee refers to a certified range on its perturbation level such
that within which the top-1 class prediction of a model will
remain unchanged [14]. In Lp-norm (p ≥ 1) bounded per-
turbations centered at x, such a guarantee is often called a
certified radius r such that any perturbation δ to x within
this radius (i.e., ∥δ∥p ≤ r) will have the same top-1 class
prediction as x. Therefore, the model is said to be provably



locally robust (i.e., attack-proof) to any perturbations within
the certified radius r. By definition, the certified radius of x
is also a lower bound on the minimal perturbation required
to flip the model prediction.

Among all the related works on attack-independent local
robustness evaluations, the CLEVER framework proposed
in [32] is the closest to our study. weng2018evaluating
derived a closed-form of certified local radius involving
the maximum local Lipschitz constant of the model output
with respect to the data input around a neighborhood of a
data sample x. They then proposed to use extreme value
theory to estimate such a constant and use it to obtain a
local robustness score, which is not a certified local radius.
Our proposed GREAT score has major differences from [32]
in that our focus is on global robustness evaluation, and
our GREAT score is the mean of a certified radius over the
sampling distribution of a generative model. In addition, for
every generated sample, our local estimate gives a certified
radius.

Global Robustness Evaluation for Deep Neural Net-
works. There are some works studying “global robust-
ness”, while their contexts and scopes are different than
ours. In [27], the global robustness is defined as the expecta-
tion of the maximal certified radius of L0-norm over a test
dataset. Ours is not limited to a test set, and we take the novel
perspective of the entire data distribution and use a gener-
ative model to define and evaluate global robustness. The
other line of works consider to derive and compute the global
Lipschitz constant of the classifier as a a global certificate
of robustness guarantee, as it quantifies the maximal change
of the classifier with respect to the entire input space [16].
The computation can be converted as a semidefinite program
(SDP) [8]. However, the computation of SDP is expensive
and hard to scale to larger neural networks. Our method
does not require computing the global Lipschitz constant,
and our computation is as simple as data forward pass for
model inference.

B.1. GREAT Score Algorithm and Computational
Complexity

To conclude this section, Algorithm 1 in Appendix sum-
marizes the procedure of computing GREAT Score using
the sample mean estimator. It can be seen that the compu-
tation complexity of GREAT Score is linear in the number
of generated samples NS . For each sample the computation
of the statistic g defined in (3) only requires drawing a sam-
ple from the generator G and taking a forward pass to the
classifier f to obtain the model predictions on each class. As
a byproduct, GREAT Score applies to the setting when the
classifier f is a black-box model, meaning only the model
outputs are observable by an evaluator.

Algorithm 1: GREAT Score Computation using
Sample Mean

Input: K-way classifier f(·), conditional generator
G(·), local score function g(·) defined in (3),
number of generated samples NS

Output: GREAT Score Ω̂S(f)
for i← 1 to NS do

Randomly select a class label y ∈ {1, 2, . . . ,K}
Sample z ∼ N (0, I) from a Gaussian
distribution and generate a sample G(z|y) with
class y

Pass G(z|y) into the model f and get the
prediction for each class {fk(G(z|y))}Kk=1

Record the statistic

g(i)(G(z|y)) =
√

π

2
·max{fy(G(z|y))−

maxk∈{1,...,K}, k ̸=y fk(G(z|y)), 0}
end
Ω̂S(f)← Evaluate the sample mean of
{g(i)(G(z|y))}NS

i=1

B.2. Ablation Study on GANs and Run-time Anal-
ysis

Ablation study on GANs. Using Group I (F) on CIFAR-
10, Figure 8 compares the inception score (IS) and the Spear-
man’s rank correlation coefficient between GREAT Score
and RobustBench on five different GANs. One can observe
that models with higher IS also attain better ranking consis-
tency.

Run-time analysis. Figure ?? compares the group-level
run-time efficiency of GREAT Score over Auto-Attack on
the same 500 generated CIFAR-10 images. We show the
ratio of their average per-sample run-time (wall clock time
of GREAT Score/Auto-Attack in Appendix ??) and observe
around 800-2000 times improvement, validating the compu-
tational efficiency of GREAT Score.

Similarly, Table 6 presents the global robustness statistics
of these three methods on ImageNet. We observe almost
perfect ranking alignment between GREAT Score and Ro-
bustBench, with their Spearman’s rank correlation coeffi-
cient being 0.9, which is higher than that of Auto-Attack and
RobustBench (0.872).

B.3. Group information of models

Group I (F): Rebuffi et al. [24] proposed a fixing data aug-
mentation method such as using CutMix [35] and GANs to
prevent over-fitting. There are 4 models in Group I: F1 uses
extra data from Tiny ImageNet in training, while F2 uses
synthetic data from DDPM. F2/F3/F4 varies in the network
architecture. They use WideResNet-70-16 [36]/WideResNet-
28-10 [36]/PreActResNet-18 [13].
Group II (U): Gowal et al. [10] studied various training set-



Figure 7. The relationship between the approximation error (ϵ) and
sample complexity in Theorem 2, with three different confidence
levels: δ = {5, 15, 25}%.

Table 6. Robustness evaluation on ImageNet using GREAT Score,
RobustBench (with test set), and Auto Attack (with generated
samples). The Spearman’s rank correlation coefficient for GREAT
score v.s. RobustBench and Auto-Attack v.s. RobustBench is 0.9
and 0.872, respectively.

Model
Name

RobustBench
Accuracy(%)

AutoAttack
Accuracy(%)

GREAT
Score

Trans1 [28] 38.14 30 0.483
Trans2 [28] 34.96 25 0.430
LIBRARY [7] 29.22 28 0.434
Fast [33] 26.24 19 0.271
Trans3 [28] 25.32 19 0.269

Figure 8. Comparison of Inception Score and Spearman’s rank
correlation to RobustBench using GREAT Score with different
GANs.

tings such as training losses, model sizes, and model weight
averaging. G1 differs from G2 in using extra data from Tiny
ImageNet for training.
Group III (R): Augustin et al. [1] proposed RATIO, which

trains with an out-Of-distribution dataset. R1 uses the out-
of-distribution data samples for training while R2 does not.
Group IV (P): SehWag et al. [29] found that a proxy distribu-
tion containing extra data can help to improve the robust ac-
curacy. P1/P2 uses WideResNet-34-10 [36]/ResNet-18 [12],
respectively.
Group V (O): This group includes all other 6 standalone mod-
els. HAT [22] incorporates wrongly labeled data samples
for training. AWP [34] regularizes weight loss landscape.
LIBRARY 3 is a package used to train and evaluate the ro-
bustness of neural network.OVER [25] uses early stopping
in reduce over-fitting during training. DDN [26] generates
gradient-based attacks for robust training. MMA [6] enables
adaptive selection of perturbation level during training.

For the 5 ImageNet models, Trans [28] incorporates
transfer learning with adversarial training. Its model
variants T1/T2/T3 use WideResNet-50-2 [36]/ResNet-50
[12]/ResNet-18 [12]. LIBRARY means using the package
mentioned in Group V to train on ImageNet. Fast [33] means
fast adversarial training. There is no L2-norm benchmark
for ImageNet on RobustBench, so we use the L∞-norm
benchmark.

B.4. GAN

We used off-the-shelf GAN models provided by Stu-
dioGAN [20], a library containing released GAN models.
We use the GAN model with the highest Inception Score
(IS) as our default GAN for GREAT Score, which is Style-
GAN2 [15] with IS = 10.477. For the ablation study of using
different GANs in GREAT Score (Section B.2), we also use
the following GAN models: LSGAN [18], DCGAN [23],
WGAN-GP [11], BigGAN [2] and StyleGAN2 [15].
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