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Figure 1. Pipeline of the proposed BEYOND framework. First we augment the input image to obtain a bunch of its neighbors. Then, we
perform the label consistency detection mechanism on the classifier’s prediction on the input image and that of neighbors predicted by
SSL’s classification head. Meanwhile, the representation similarity mechanism employs cosine distance to measure the similarity among
the input image and its neighbors (left). The input image with poor label consistency or representation similarity is flagged as AE (right).

Abstract
Deep Neural Networks (DNNs) have achieved excellent

performance in various fields. However, DNNs’ vulnera-
bility to Adversarial Examples (AE) hinders their deploy-
ments to safety-critical applications, e.g., autonomous driv-
ing. This paper presents a novel AE detection framework,
named BEYOND, for trustworthy predictions. BEYOND
performs the detection by distinguishing AE’s abnormal re-
lation with its augmented versions, i.e. neighbors, from two
prospects: representation similarity and label consistency.
An off-the-shelf Self-Supervised Learning (SSL) model is
used to extract the representation and predict the label for
its highly informative representation capacity compared to
supervised learning models. For clean samples, their repre-
sentations and predictions are closely consistent with their
neighbors, whereas those of AEs differ greatly. Moreover,
we explain this observation and show that by leveraging this
discrepancy BEYOND can effectively detect AEs. Experi-
ments show that BEYOND outperforms baselines by a large
margin, especially under adaptive attacks.

*Zhiyuan He and Yijun Yang contribute equally to this work.

1. Introduction

Deep Neural Networks (DNNs) have been widely
adopted in many fields such as computer vision, speech
recognition, and natural language processing due to their
superior performance. However, DNNs are vulnerable to
Adversarial Examples (AEs), which can easily fool DNNs
by adding some imperceptible adversarial perturbations.
Such vulnerability precludes DNNs from being deployed to
safety-critical applications such as autonomous driving and
disease diagnosis, where incorrect predictions can lead to
catastrophic economic and even loss of life.

Existing defensive countermeasures can be roughly cat-
egorized as: adversarial training, input purification, and AE
detection [1, 4, 8]. Adversarial training is known as the
most effective defense technique [4], but it brings accuracy
degradation and extra training cost, which are unacceptable
under some application scenarios. By contrast, input trans-
formation techniques without high training/deployed costs,
but their defensive ability is limited, i.e easily being de-
feated by adaptive attacks [4].

Recently, a large number of AE detection methods have
been proposed. Some methods detect AE by interrogating



the abnormal relationship between AE and other samples.
For example, Deep k-Nearest Neighbors (DkNN) [8] com-
pares the DNN-extracted features of the input image with
that of its k nearest neighbors layer by layer to identify AE,
leading to high inference cost. Instead of comparing all the
features, Latent Neighborhood Graph (LNG) [1] employs a
Graph Neural Network to make the comparison on a neigh-
borhood graph, whose nodes are pre-stored embeddings of
AEs together with those of the clean ones extracted by a
DNN, and the edges are built according to distances be-
tween the input node and every reference node. Though
more efficient than DkNN, LNG suffers from some weak-
nesses: some AEs are required to build the graph the de-
tection performance relays on the reference AEs and cannot
effectively generalize to unseen attacks. More importantly,
both DkNN and LNG can be bypassed by adaptive attacks,
in which the adversary knows full knowledge of the detec-
tion strategy.

We observe that one cause for the adversarial vulnerabil-
ity is the lack of feature invariance, i.e. small perturbations
may lead to undesired large changes in features or even
predicted labels. Self-Supervised Learning (SSL) models
learn data representation consistency under different data
augmentations, which intuitively can mitigate the issue of
lacking feature invariance and thereby improve adversarial
robustness [1]. As an illustration, we visualize the SSL-
extracted representation of the clean sample, AE and that of
their corresponding augmentations in Fig. 1 (right). We can
observe that the clean sample has closer ties with its neigh-
bors reflected by the higher label consistency and represen-
tation similarity. Whereas AE’s representation stays quite
far away from its neighbors, and there is a wide divergence
in the predicted labels.

Inspired by the above observations, we propose an
novel AE detection framework, named BE Your Own
NeighborhooD (BEYOND). The contributions of this work
are summarized as follows:

• We propose BEYOND, a novel AE detection framework,
which takes advantage of SSL model’s robust represen-
tation capacity to identify AE by referring to its neigh-
bors. To our best knowledge, BEYOND is the first work
that leverages SSL model for AE detection without prior
knowledge of adversarial attacks or AEs.

• We show that BEYOND can effectively defend against
adaptive attacks. To defeat the two adopted detection
mechanisms: label consistency and representation simi-
larity simultaneously, attackers have to optimize two ob-
jectives that have contradictory directions, resulting in
gradients canceling each other out.

• As a plug-and-play method, BEYOND can be applied di-
rectly to any image classifier without compromising ac-
curacy or additional retraining costs.

2. Proposed Method
2.1. Method Overview

Compontens. BEYOND consists of three components: a
SSL feature exacter f(·), a classification head g(·), and a
representation head h(·), as shown in Fig. 1 (left). To be
more specific, the SSL feature exacter is a Convolutional
Neural Network (CNN), pretrained by specially-designed
loss, e.g., contrastive loss, without supervision *. A Fully-
Connected (FC) layer acts as the classification head g(·),
trained by freezing the f(·). The g(·) performs on input
image’s neighbors for label consistency detection. The rep-
resentation head h(·) consisting three FC layer, encodes the
output of f(·) to a embedding, i.e. representation. We op-
erate the representation similarity detection on representa-
tions of the input image and its neighbors.
Core idea. Our approach relies on robust relationships be-
tween input sample and its neighbors for AE detection. The
key idea is that adversarial attacks may easily attack one
sample’s representation to another submanifold, but it is
difficult to totally shift that of all its neighbors. We em-
ploy the SSL model to capture such relationships, since it is
trained to project input and its augmentations (neighbor) to
the same sub-manifold [3].
Selection of neighbor number. Obviously, the larger the
number of neighbors, the more stable relationship between
them, but may increase the overhead. We choose 50 neigh-
bors for BEYOND, since larger neighbors no longer enhance
the performance significantly , as shown in Fig. 2.

Figure 2. Detection performance with different number of neigh-
bors on CIFAR-10.
Workflow. Fig. 1 demonstrates the workflow of the pro-
posed BEYOND. When input comes, we first transform it
to 50 augmentations, i.e. 50 neighbors. Next, the input
along with its 50 neighbors are fed to SSL feature extractor
f(·) thereafter the classification head g(·) and representa-
tion head h(·), respectively. For the classification branch,
g(·) outputs the predicted label for 50 neighbors. Later, the
label consistency detection algorithm calculates the consis-
tency level between the input label (predicted by the clas-
sifier) and 50 labels of neighbors. When it comes to the
representation branch, the generated 51 representations are

*Here, we employ the SimSiam [3] as the SSL feature-exactor for its
decent performance.



sent to representation similarity detection algorithm for AE
detection. If a sample’s label consistency or representation
similarity is lower than a threshold, BEYOND shall flag AE.

2.2. Detection Algorithms

For enhanced AE detection capability, BEYOND adopted
two detection mechanisms: Label Consistency, and Rep-
resentation Similarity. The detection performance of the
combined two can exceed any of the individuals. More im-
portantly, their contradictory optimization directions hinder
the adaptive attacks to bypass both of them, simultaneously.
Label Consistency. We compare the classifier’s predic-
tion, ℓcls(x), on input image, x, to SSL classification head’s
predictions, ℓssl(x̂i), i = 1 . . . k, where x̂i denotes the ith
neighbor, k is the total number of neighbors. If ℓcls(x)
equals ℓssli(x̂i), the label consistency increases by one,
IndLabel+ = 1. Once the final label consistency less than a
certain threshold, IndLabel < Tlabel, the Label Consistency
flags it as AE. We summarize the label consistency detec-
tion mechanism in Algorithm. 1.
Representation Similarity. We employ the cosine distance
as a metric to calculate the similarity between the repre-
sentation of input sample, r(x) and that of its neighbors,
r(x̂i), i = 1, ..., k. Once the similarity, −cos(r(x), r(x̂i)),
is higher than a certain value, representation similarity in-
creases by 1, IndRep+ = 1. If the final representation simi-
larity less than a threshold, IndReP < Trep, the representa-
tion similarity flag the sample as an AE. Algorithm. 1 con-
cludes the representation similarity detection mechanism.

Note that, we select the thresholds, i.e. Tlabel, Trep, by
fix the False Positive Rate (FPR)@5%, which can be deter-
mined only by clean sample, and the implementation of our
method needs no prior knowledge about AE.

2.3. Resistance to Adaptive Attacks

Attackers may design adaptive attacks to bypass BE-
YOND, if the attacker knows both the classifier and the de-
tection strategy. BEYOND apply the augmentation on the
input, which has a weakening effect on adversarial perturba-
tions. As a result, to mislassified SSL’s classification results
on neighbors,i.e. bypass label consistency detection, large
perturbations are needed. However, to bypass the represen-
tation similarity detection, the added perturbation should be
small, since a large perturbation can alter the representa-
tion significantly. Therefore, to attack BEYOND, attackers
have to optimize two objectives that have contradictory di-
rections, resulting in gradients canceling each other out.

3. Evaluation
3.1. Experimental Setting

Gray-box attack & White-box attack. In the grey-box
attack setting, the adversary has complete knowledge of

Algorithm 1 BEYOND detection algorithm
Input: Input image x, target classifier c(·), SSL feature exactor
f(x), classification head g(x), projector head h(x), label con-
sistency threshold Tlabel, representation similarity threshold Trep,
Augmentation Aug, neighbor indicator i, total neighbor k
Output: reject / accept

1: Stage1: Collect labels and representations.
2: ℓcls(x) = c(x)
3: for i in k do
4: x̂i = Aug(x)
5: ℓssl(x̂i) = f(g(x̂i));r(x) = f(h(x)); r(x̂i) = f(h(x̂i))
6: Stage2: Label consistency detection mechanism.
7: for i in k do
8: if ℓ(x̂i) == ℓ(x) then Indlabel+ = 1
9: Stage3: Representation similarity detection mechanism.

10: for i in k do
11: if cos(r(x), r(x̂i)) < Tcos then Indrep+ = 1
12: Stage4: AE detection.
13: if Indlabel < Tlabel or Indrep < Trep then reject
14: else accept

Table 1. Information of Datasets and Models.

Dataset Classifier
SSL

Accuracy↑
Classifier SSL

CIFAR-10 ResNet18 91.53% 90.74%
CIFAR-100 ResNet18 75.34% 66.04%
IMAGENET ResNet50 80.86% 68.30%

the classifier, while the detection strategy is confidential.
Whereas in an adaptive attack (white-box) setting, the ad-
versary is aware of the defense strategy.
Datasets & Target models. We conduct experiments on
three popular datasets: CIFAR-10, CIFAR-100, and IMA-
GENET. The details of the target models (classifiers), and
the SSL models along with their original classification ac-
curacy on clean samples are summarized in Tab. 1.
Attacks. Evaluations are conducted on FGSM, PGD, CW,
and AutoAttack [4]. AutoAttack includes APGD, APGD-
T, FAB-T, and Square, where APGD-T and FAB-T are tar-
geted attacks, and Square is a black-box attack.
Metrics. TPR@FPR@n%: TPR@FPR indicates the true
positive rate (TPR) at a false positive rate (FPR) ≤ n%,
which reflects the detection ability while ensuring the clas-
sification precision of clean samples. ROC curve & AUC:
ROC curves describe the impact of various thresholds on
detection performance, and the AUC is an overall metric.
Baselines. We choose five detection-based defense methods
as baselines: kNN [5], DkNN [8], LID [7], [6] and LNG [1],
which also consider the relationship among the input and its
neighbors to some extent.

3.2. Detection Performance

Tab. 3 reports TPR@FPR5% to demonstrate BEYOND’s
AE detection performance. It can be seen that BEYOND
maintains a high detection performance in various attacks



Table 2. The AUC of Different Adversarial Detection Approaches on CIFAR-10. The bolded values are the best performance. To align
with baselines, classifier: ResNet110, FGSM: ϵ = 0.05, PGD: ϵ = 0.02. Note that BEYOND needs no AE for training, leading to the
same value on both seen and unseen settings.

Methods Unseen: Attacks used in training are preclude from test. Seen: Attacks used in training are included in test.
FGSM PGD AutoAttack Square FGSM PGD CW AutoAttack Square

DkNN 61.50% 51.18% 52.11% 59.51% 61.50% 51.18% 61.46% 52.11% 59.21%
kNN 61.80% 54.46% 52.64% 73.39% 61.80% 54.46% 62.25% 52.64% 73.39%
LID 71.15% 61.27% 55.57% 66.11% 73.56% 67.95% 55.60% 56.25% 85.93%
Hu 84.44% 58.55% 53.54% 95.83% 84.44% 58.55% 90.99% 53.54% 95.83%

LNG 98.51% 63.14% 58.47% 94.71% 99.88% 91.39% 89.74% 84.03% 98.82%
BEYOND 98.89% 99.29% 99.18% 99.29% 98.89% 99.29% 99.20% 99.18% 99.29%

Table 3. TPR@FPR 5% of BEYOND against Gray-box Attack. All
attacks have a perturbation budget of an L∞ = 8/255.

Dataset CIFAR-10 CIFAR-100 IMAGENET
Attack TPR@FPR5%↑
FGSM 86.16% 89.80% 61.05%
PGD 82.80% 85.90% 89.80%
CW 91.48% 91.96% 76.69%

APGD 83.70% 85.50% 90.70%
APGD-T 98.40% 94.80% 90.70%
FAB-T 97.00% 92.20% 80.60%
Square 94.57% 91.10% 75.00%

and datasets. Tab. 2 compares the AUC of BEYOND with
five baselines on CIFAR-10. Since LID and LNG rely on
AEs for reference during training, we report detection per-
formance on both seen and unseen attacks. In the seen set-
ting, LID and LNG are trained with all types of attacks,
while using only the CW attack in the unseen attack setting.
Note that the detection performance for BEYOND is consis-
tent, since BEYOND needs no AE for training. Experimen-
tal results show that BEYOND consistently outperforms the
SOTA AE detection methods on CIFAR-10, and the per-
formance advantage is significant when under the unseen
setting.

3.3. Adaptive Attacks
The Design of Adaptive Attack. To adaptively attack
BEYOND, the adversary needs to deceive the target model
while guaranteeing the label consistency and representation
similarity. Note that BEYOND is not based on random trans-
formations. For multiple augmentations employed in BE-
YOND, we estimate their impact on label consistency and
representation similarity during the adaptive attack follow-
ing Expectation over Transformation (EoT) [2] as:

Siml =
1

k

k∑
i=1

L
(
f(g

(
W i

aug(x+ δ)
)
), yt

)
,

Simr =
1

k

k∑
i=1

(S(f(h(W i
aug(x+ δ))), f(h(x+ δ)))),

(1)

where S represents the cosine similarity, Waug represents
data augmentations, and the adaptive adversaries perform
gradient descent on the following combined objective:

min
δ

LC(x+ δ, yt) + Siml − Simr, (2)

where LC indicates classifier’s loss function, and yt is the
targeted class.

(a) CIFAR-10 (b) CIFAR-100

Figure 3. ROC Curve of Perturbation Budgets.

ROC v.s. Perturbation Budgets. Fig. 3 summarizes the
ROC curve varying with different perturbation budgets on
CIFAR-10 and CIFAR-100. Our analysis regarding Fig. 3 is
as follows: 1) BEYOND can be bypassed when perturbations
are large enough, which is caused by the large perturbation
circumventing the input transformation. This shows that
BEYOND is not gradient masking and our adaptive attack
design is effective. However, large perturbations, while by-
passing BEYOND, are easier to perceive. 2) When the per-
turbation is small, the detection performance of BEYOND
for adaptive attacks remains high. This is because small
perturbations cannot guarantee both label consistency and
representation similarity. 3) Under the same perturbation
budget, the performance of adaptive attack on CIFAR-100
is weaker than CIFAR-10, which is because the complex
label space of CIFAR-100 makes the optimization of label
consistency more difficult than CIFAR-10.

4. Conclusion

We propose BEYOND, a novel detection framework,
which focuses on identifying abnormal relations between
AEs and their augmented neighbors. Samples have low
label consistency and representation similarity with their
neighbors is detected as AE. We empirically demonstrate
the effectiveness of BEYOND through grey-box and adap-
tive attacks. Experimental results show that BEYOND out-
performs SOTA AE detectors.



References
[1] Ahmed Abusnaina, Yuhang Wu, Sunpreet Arora, Yizhen

Wang, Fei Wang, Hao Yang, and David Mohaisen. Adver-
sarial example detection using latent neighborhood graph. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7687–7696, 2021. 1, 2, 3

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin
Kwok. Synthesizing robust adversarial examples. In In-
ternational conference on machine learning, pages 284–293.
PMLR, 2018. 4

[3] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021. 2

[4] Francesco Croce and Matthias Hein. Reliable evaluation of
adversarial robustness with an ensemble of diverse parameter-
free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020. 1, 3

[5] Abhimanyu Dubey, Laurens van der Maaten, I. Zeki Yalniz,
Yixuan Li, and Dhruv Mahajan. Defense against adversarial
images using web-scale nearest-neighbor search. computer
vision and pattern recognition, 2019. 3

[6] Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and Kil-
ian Q. Weinberger. A new defense against adversarial images:
Turning a weakness into a strength. neural information pro-
cessing systems, 2019. 3

[7] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi
Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E
Houle, and James Bailey. Characterizing adversarial sub-
spaces using local intrinsic dimensionality. arXiv preprint
arXiv:1801.02613, 2018. 3

[8] Nicolas Papernot and Patrick McDaniel. Deep k-nearest
neighbors: Towards confident, interpretable and robust deep
learning. arXiv preprint arXiv:1803.04765, 2018. 1, 2, 3


	. Introduction
	. Proposed Method
	. Method Overview
	. Detection Algorithms
	. Resistance to Adaptive Attacks

	. Evaluation
	. Experimental Setting
	. Detection Performance
	. Adaptive Attacks

	. Conclusion

