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Abstract

Few-shot image classification, where the goal is to gen-
eralize to tasks with limited labeled data, has seen great
progress over the years. However, the classifiers are vul-
nerable to adversarial examples, posing a question regard-
ing their generalization capabilities. Previous works have
tried to combine meta-learning approaches with adversarial
training to improve the robustness of few-shot classifiers.
We show that a simple transfer-learning based approach
can be used to train adversarially robust few-shot classi-
fiers. We also present a method for novel classification task
based on calibrating the centroid of the few-shot category
towards the base classes. We show that standard adver-
sarial training on base categories along with calibrated
centroid-based classifier in the novel categories, outper-
forms or is on-par with previous methods on standard bench-
marks for few-shot learning. Our method is simple, easy to
scale, and with little effort can lead to robust few-shot clas-
sifiers. Code: https://github.com/UCDvision/
Simple_few_shot.git

1. Introduction

Few-shot learning presents the challenge of learning
quickly from few examples of data, which is generally con-
sidered the hallmark of human intelligence. This is an impor-
tant practical problem due to the scarce availability of fully
annotated data in the real world and such a setting can be
considered for various real world computer vision tasks. As a
result, it is of paramount importance that such safety-critical
systems are reliable and robust to input perturbations. Specif-
ically in this work, we consider robustness to adversarial
examples - carefully crafted perturbations that when added
to inputs, fool the classifier. The most common method of
improving robustness is by adversarial training [7] which
involves training on adversarial examples using adversary of
choice. Traditional adversarially robust methods [7] consider
a data-rich setting where many examples are available per
category. This becomes challenging when the end-user has
access to limited amount of annotated data but is interested
in building a robust classifier. Such a setting is more practi-

cal and it is important to develop methods which can work
with minimal effort in the pre-deployment stage.
One of the well known frameworks for few-shot learning is

MAML [2] which aims at learning a network initialization
using a bi-level optimization procedure, that when finetuned
on limited data is able to generalize to the new task. [3, 11]
perform adversarial training on top of meta-learners to im-
prove robustness. However, adversarial training on its own is
expensive and combining with meta-learning makes the prob-
lem computationally intensive. [11] showed that there exists
a compromise between training robust meta-learners and
performance, motivating the need for a simpler approach.
We consider a simple setting and show that adversarial train-
ing along with a centroid-based classifier can outperform
previous methods in terms of robustness. Such a setting is
practically relevant, since the adversarial training is done just
once and robustness for few-shot classes can be achieved
without creating adversarial examples. We believe it also
becomes easier to incorporate new approaches to robustness,
such as verifiably robust classifiers and can bring together
robust methods for both large and limited dataset settings.

2. Method
Here we introduce notation and provide a description of

our method. Our first objective is to learn a feature extractor
fθb and linear classifier Cωb

using the abundantly-labeled
base dataset Xb. Previous approaches consider multiple few-
shot tasks sampled from Xb for meta-learning, whereas we
consider a standard mini-batch based training.
At the next stage, when a N -way K-shot task is sampled
from the non-overlapping novel dataset Xn, we use only the
feature extractor fθb and learn a new classifier Cωn

that can
generalize to novel categories.We divide our approach into
two stages: (1) Robust Base training and (2) Novel training.

2.1. Robust Base Training

Given a base dataset Xb, we perform adversarial training
using an iterative adversary such as PGD [7]. Specifically,
we solve the min-max objective

θ∗ = min
θ

E(x,y)∈Xb

[
max

||δ||p<ϵ
L(θ, x+ δ, y)

]
(1)
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(a) Robust Base Training (b) Novel Training

Figure 1. Our method is divided into two phases (a) Robust Base training involves standard adversarial training with base dataset consisting
of many examples and categories (b) Novel Training involves transferring or adapting the network for novel few-shot data using a Calibrated
Nearest Centroid (CNC) classifier. Note that the feature extractor remains frozen in the second phase.

Here, L(θ, x, y) represents the training objective, which is
commonly cross-entropy and θ = (θb, ωb) represents the
combination of the feature extractor and base classifier pa-
rameters. There are different methods for optimizing the
inner maximization in Equation 1. We use the Projected
Gradient Descent (PGD) algorithm [7] with p =∞ which
corresponds to finding a perturbation δ within an ϵ-bounded
hypercube around x that maximizes the objective. Note
that adversarial training which is a computationally expen-
sive procedure, needs to be performed just once using base
dataset. The intuition behind this approach is that the model
sees multiple categories across batches rather than episodic
data, hence gaining better understanding of semantic cate-
gories and robustness which can be beneficial for adaptation.
Episodic data corresponds to sampling a N-way, K-shot task
from base dataset with data and labels changing across multi-
ple epochs. Since network is trained for multiple epochs and
sampling is performed many times, the label associated with
a particular category changes across epochs, hence the net-
work does not get a semantic understanding of each category,
but is merely tuned for fast adaptation.
Weight averaging: Weight averaging (WA) has been shown
to improve generalization [6] in deep networks as it approx-
imates ensembling in temporal fashion and can find flatter
optima in loss surface. We perform this for only the feature
extractor parameters θb which will be used in the next step.
Similar to [5], we keep a separate copy of the weights and for
every iteration perform exponential moving average method
θb

′ ← τθb
′ + (1− τ) ∗ θb and use θb′ during the evaluation.

We set τ = 0.999 in all our experiments.

2.2. Novel Training

During this stage, we consider the N -way, K-shot novel task
and adapt our feature extractor fθb using classifier Cωn .
Linear classifier: The simplest baseline is to learn a lin-
ear model on top of the frozen feature extractor using the
few shot examples. We find this achieves reasonable perfor-
mance suggesting that a robust base classifier corresponds
to a robust novel classifier. However, this approach alone is
not sufficient to achieve improved robustness compared to
previous methods, which maybe due to fact that the model
can become biased towards the specific few-shot samples
and may not capture the true class distribution.

Background on Distribution Calibration (DC) [13]: Previ-
ous work [13] has shown that standard accuracy of few-shot
classifiers can be improved by using Distribution Calibration.
They present a free-lunch hallucination-based method where
the feature distributions of the novel categories are calibrated
using the base dataset, due to the similarity between the base
and novel datasets. The mean and covariance of each novel
category is calibrated using the statistic of base data and
sampling or hallucination is done for many points from a
Gaussian distribution to learn a logistic regression classifier.
Calibrated Nearest Centroid (CNC): DC method can be
computationally expensive and is difficult for large scale
settings due to covariance matrix calculation which can be of
O(N∗D2) complexity where D is the feature dimensionality
and N is the number of data points. Moreover, sampling
from a multivariate Gaussian with non-diagonal covariance
is expensive and can be of the order of at least O(D2.3).
To overcome these drawbacks, we present a simple method
where we rely only on the calibrated mean and classify
query sample using a non-parametric Nearest Centroid based
algorithm. We call this the Calibrated Nearest Centroid
(CNC) Classifier. We find the nearest base-category centers
to each novel training sample and then average them along
with the novel training sample to obtain the new mean or
centroid for the novel category. More formally:

µj =
1

m+ 1
(zj +

∑
i∈Sj

µb
i )

where µj is the center for the novel category j and Sj is the
set of m base category centers that are closest to zj , µb

i is
the mean of base category i in the feature space. In the case
of k-shot setting, we calculate a centroid for each sample
and average them to get one centroid for each category.
At inference, we simply find the nearest center to the query
point and assign its label: ŷ = {yj | argmaxj µ̃

T
j z̃}

where z̃ and µ̃ represent ℓ2 normalized version of vectors
z and µ respectively, while ŷ is the prediction. Note that
ℓ2 normalization is done for both query point and centroids,
which ensures that euclidean distance reduces to the cosine
form. Note that similar to [13], as a preprocessing step, we
transform the embeddings by taking the square root of each
dimension so that their distribution gets closer to Gaussian. It
can be seen as “Tukey’s Transformation” [10] with λ = 0.5.



1-shot 5-shot
Method Backbone Standard Robust Standard Robust

Acc. Acc. Acc. Acc.
AQ ResNet18 41.48 ± 0.56 20.52 ± 0.45 59.32 ± 0.53 32.18 ± 0.50
Ours (Linear) ResNet18 42.63 ± 0.56 19.56± 0.45 61.35 ± 0.51 30.63 ± 0.52
Ours (CNC) ResNet18 44.98 ± 0.59 21.38 ± 0.46 61.30 ± 0.55 33.41 ± 0.51
AQ ResNet12 47.95 ± 0.63 21.71 ± 0.47 69.69 ± 0.51 35.55 ± 0.53
Ours (Linear) ResNet12 47.81 ± 0.60 22.81 ± 0.50 65.83 ± 0.53 35.29 ± 0.53
Ours (CNC) ResNet12 49.49 ± 0.63 25.32 ± 0.52 66.48 ± 0.53 38.83 ± 0.57
AQ WRN-50-2 38.99 ± 0.55 22.09 ± 0.45 57.11 ± 0.51 33.62 ± 0.50
Ours (Linear) WRN-50-2 43.14 ± 0.54 19.94 ± 0.43 62.93 ± 0.50 30.52 ± 0.52
Ours (CNC) WRN-50-2 46.71 ± 0.62 23.04 ± 0.50 63.60 ± 0.55 36.06 ± 0.54
AQ WRN-28-10 44.17 ± 0.60 23.81 ± 0.48 62.41 ± 0.54 33.62 ± 0.50
Ours (Linear) WRN-28-10 52.36 ± 0.62 22.23±0.52 72.11 ± 0.51 32.29 ± 0.59
Ours (CNC) WRN-28-10 53.22 ± 0.66 22.91 ± 0.51 70.13 ± 0.52 35.40 ± 0.58
AQ DenseNet121 38.32 ± 0.55 10.19 ± 0.32 56.65 ± 0.51 17.77 ± 0.41
Ours (Linear) DenseNet121 39.77 ± 0.56 18.16±0.42 57.45± 0.54 27.89 ±0.52
Ours (CNC) DenseNet121 42.05± 0.60 20.21 ± 0.45 58.59±0.55 32.24±0.56
AQ DenseNet161 37.35 ± 0.52 9.80 ± 0.31 55.97 ± 0.53 16.69 ± 0.38
Ours (Linear) DenseNet161 40.75 ± 0.55 17.44 ± 0.41 59.84 ± 0.53 27.11± 0.50
Ours (CNC) DenseNet161 43.48 ± 0.60 20.63 ± 0.45 60.92 ± 0.54 33.87 ± 0.53

Table 1. Results on Mini-ImageNet dataset. Our CNC method outperforms other approaches which becomes clear as we move to larger
architectures. We can also see that our linear classifier serves as a strong baseline and can be used to learn robust few-shot classifier.

1-shot 5-shot
Method Backbone Standard Robust Standard Robust

Acc. Acc. Acc. Acc.
AQ ResNet18 45.41± 0.68 21.76 ± 0.59 64.98 ± 0.58 34.24 ± 0.65
Ours (Linear) ResNet18 44.76 ± 0.63 21.01 ± 0.58 62.23 ± 0.63 31.60± 0.66
Ours (CNC) ResNet18 48.89± 0.71 27.16 ± 0.66 64.36± 0.61 39.13 ± 0.71

Table 2. Results on CIFAR-FS dataset. We can see our CNC method outperforms compared to previous approaches.

3. Experiments
In this section, we describe our experiments and provide im-
plementation details. We evaluate our method on benchmark
datasets such as Mini-ImageNet , CIFAR-FS. Due to lack
of space, we refer the readers to supplementary material for
more implementation details and additional experiments.
We use Pytorch and NVIDIA 2080Ti GPUs for all our ex-
periments. We report the accuracy for 5-way, 1-shot and
5-way, 5-shot settings averaged over 1000 different trials as
well as the 95% confidence intervals. Since our goal is to
build robust models, we mainly focus on improving Robust
Accuracy for which we use 20 iterations of PGD. We com-
pare our results with [3] ,which we refer to as Adversarial
Querying (AQ) where adversarial examples are created for
query data. We refer to training a linear classifier as Linear
and the Calibrated Nearest Centroid classifier as CNC.
Results: We present our main results on Mini-ImageNet in
Table 1 and CIFAR-FS in Table 2. We observe that CNC
method outperforms other approaches in Robust Accuracy
under most settings and boosts standard accuracy as well.
We consider the ResNet12 network [9] containing additional
regularization such as DropBlock which leads to improved
results.We also show results on large-scale architectures such

as WideResNets and DenseNets. The difference becomes
clear as we move to larger architectures. Our Linear classifier
also serves as a strong baseline for robust few-shot settings.
Our method is straightforward to scale for large architectures
since it is equivalent to standard adversarial training. How-
ever, we observed that scaling meta-learning combined with
adversarial training is difficult. As a comparison, we trained
both AQ and our model on 4 NVIDIA TITAN RTX GPUs
using WideResNet-28-10 backbones. AQ method took 1.7
hour/epoch and required 60 epochs while our method took
0.36 hour/epoch for 250 epochs. The total training time for
AQ was around 100 hours whereas our method took around
90 hours, showcasing the scalability of our approach.

Analysis: Here, we would like to study the effect of dif-
ferent combinations of the base and novel training, allowing
for a careful analysis. We consider Mini-ImageNet dataset
on ResNet18 backbone and the results are presented in Ta-
ble 3. We observe that the simple baseline of robust base
training and training a linear classifier during novel training
can be a considered a strong baseline (Exp Id 1,4). We also
observe that DC algorithm [13] improves standard accuracy
but introduces a drop in robustness (Exp Id 2,5). Note that
DC involves hallucination of examples at a feature level and



Base Novel 1-shot 5-shot
Training Training

Exp. WA DC CNC Linear Standard Robust Standard Robust
Id Acc. Acc. Acc. Acc.
1 ✗ ✗ ✗ ✓ 41.40 ± 0.56 18.25 ± 0.45 59.30 ± 0.54 27.96 ± 0.50
2 ✗ ✓ ✗ ✗ 43.72 ± 0.57 14.18 ± 0.38 58.04 ± 0.52 13.97 ± 0.39
3 ✗ ✗ ✓ ✗ 42.56 ± 0.60 19.57 ± 0.45 58.22 ± 0.53 30.42 ± 0.50
4 ✓ ✗ ✗ ✓ 42.63 ± 0.56 19.56 ± 0.45 61.35 ± 0.51 30.63 ± 0.52
5 ✓ ✓ ✗ ✗ 44.73 ± 0.59 15.29 ± 0.41 59.78 ± 0.53 19.49 ± 0.49
6 ✓ ✗ ✓ ✗ 44.98 ± 0.59 21.38 ± 0.46 61.30 ± 0.55 33.41 ± 0.51

Table 3. Illustration of different configurations of Base and Novel training. Here we show results on ResNet18 backbone on Mini-ImageNet.
WA represents Weight Averaging, DC represents Distribution Calibration and CNC corresponds to the Calibrated Nearest Centroid classifier.

1-shot
Method Standard Robust

Acc. Acc.
Linear No Adv 42.63 ± 0.56 19.56 ± 0.45
Linear 7-PGD 42.00 ± 0.56 18.83 ± 0.42
Linear 20-PGD 42.03 ± 0.58 19.01 ± 0.42
Ours (CNC) 44.98 ± 0.59 21.38 ± 0.46

Table 4. Experiment where adversarial training is performed on
few-shot data when learning the linear classifier using ResNet18
backbone on MiniImageNet. No Adv refers to clean examples,
7-PGD refers to 7-step PGD and 20-PGD refers to 20-step PGD
used in training. Robust Accuracy is calculated using 20-step PGD.

learning a Logistic Regression Classifier. We believe that
one reason for the drop in robustness is because the final
classifier becomes biased to the clean hallucinated examples,
leading to non-robust margins across different classes. In
most configurations we observe that our method matches
or even outperforms the DC method and more importantly
improves robustness (Exp Id 5,6). This shows that the ro-
bustness of the base dataset is transferred to the novel setting.
The impact of weight averaging (WA) method can be ob-
served when considering Exp Ids 3 and 6. The temporal
ensembling nature of the method helps in finding flatter min-
ima, thereby boosting performance. Previous works [5] have
shown that this can be used for standard robust classifiers.
We observe this holds for a transfer-learning type setting.
We also conduct another experiment where adversarial train-
ing is performed during the novel training stage and results
are shown in Table 4. We can see that there is no improve-
ment in Robust Accuracy and our CNC method outperforms
without the complex adversarial training procedure

Extension to verifiably robust models: An advantage of
our simple framework is that we can incorporate methods
from the adversarial examples literature for few-shot learn-
ing. Specifically, we consider verifiably robust procedures
where the goal is to provide a guarantee on adversarial ro-
bustness of the model. Standard adversarial training meth-
ods do not lead to provably robust models leading to low

verified accuracy, we observe a similar trend in our exper-
iments as well. Many methods have been proposed in this
area [1, 8, 14] and we consider one of them - Interval Bound
Propagation (IBP) [4]. This allows to train a provably robust
model whose accuracy does not drop below the verified ac-
curacy for a given threat model. Here we show that replacing
PGD-training with IBP during the robust base training stage
described in main paper, can lead to verifiable robustness for
few-shot classifiers. We show results for 1-shot setting in
Table 5 where we use a ResNet18 backbone on CIFAR-FS
dataset. We use the training procedure as described in [12]
with ϵ = 8/255 for 1000 epochs. Here Robust Accuracy
refers to 20-iteration PGD testing and Verified Accuracy is
calculated similar to [4]. We believe this experiment can
encourage researchers to incorporate more advanced verifi-
cation methods in the future for few-shot settings.

1-shot
Method Standard Robust Verified

Acc. Acc. Acc.
IBP + Linear 37.01 ± 0.65 26.77 ± 0.59 21.79± 0.55
IBP + CNC 37.72 ± 0.65 28.12 ± 0.62 23.25 ± 0.61

Table 5. We show that it is possible to train verifiably robust models
for few-shot settings. This is an added advantage of our framework
due to the similarity to standard classifier training. Results are
shown using ResNet18 backbone on CIFAR-FS dataset.

4. Conclusion
We present a simple and scalable approach for improving

robustness in few-shot image classifiers. Our method outper-
forms previous approaches when compared with standard
few-shot learning benchmarks on both standard and robust
accuracy. Note that our method is similar to traditional adver-
sarial machine learning approaches rather than meta-learning
methods, hence, simplifying the algorithm. We believe that
the simplicity of our approach would be beneficial to the
community, upon which researchers can develop advanced
robust few-shot classifiers.
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