
Supplementary Material
A. Background and Related Work
Pre-trained and CLIP-like Models Pre-trained models, learned on a large and diverse dataset, have been a widely popular
technique for building strong machine learning models that can be efficiently transferred to down-stream tasks [2, 4, 8, 9,
17, 18, 29, 30, 32, 43, 44]. In this paper, we primarily evaluate with the Contrastive Language–Image Pre-training (CLIP)
model [29]. CLIP is a natural language supervised model that is pre-trained on a large 400 million set of image-caption pairs
obtained from the web. Specifically, given a set of image-caption pairs D = {(X1, T1)..., (Xn, Tn)}, CLIP-like models train
an image-encoder f and a text-encoder g over the dataset D such that the cosine similarity between the features f(xk) and
h(tk) is maximized with respect to each pair k.

During inference time, given an input image x̂ with m classes to choose from C = {c1, ..., cm}, CLIP-like models
performs zero-shot classification through

ŷ = argmax
i

(sim(f(x̂), g(si))) (4)

where f(x̂) is the image features, g(si) is the class-wise captions features where si = “a photo of a {ci}”, and sim(f, g) is
the cosine-similarity function.

Out-of-distribution Generalization To evaluate the OOD Generalization performance of our down-stream models, we
tune and compare the accuracy of our methods with respect to two distinct but related datasets Din and Dout. The Din

set is the in-distribution dataset to which our pre-trained model will be tuned on. The separate OOD dataset Dout is a
covariate (domain) shifted out-of-distribution dataset, which contains samples that have the same semantic meanings as the
in-distribution dataset Din but are presented in different forms. For example, these forms can include sketched, origami, and
other versions of the in-distribution classes [11, 13, 31, 37].

The goal of a good transfer learning method, in a OOD Generalization setting, is for there to be high accuracy across both
Din and Dout. Being able to achieve high accuracy across both datasets is paramount, as an intelligent and robust model
should be agnostic to the covariate shifts of a sample.

Out-of-distribution Detection Out-of-distribution detection can be formulated as a binary classification problem, where
given some classifier f̃ , tasked on the in-distribution dataset Din, our objective is to design a function estimator

h(x̂) =

{
in, if S(x̂) ≥ γ

out, if S(x̂) < γ,

where h(x̂) can determine whether a sample x̂ is in-distribution Din or out-of-distribution Qout. Critically, in the OOD
Detection setting, our goal is to detect semantically (concept) shifted samples. For example, if the in-distribution encapsulates
samples of {“cats”, “dogs”} then the goal of our detector h, given a “car” sample x̂, is to detect that the x̂ sample does not
belong to the in-distribution set x̂ /∈ Din, or equivalently that the sample is out-of-distribution x̂ ∈ Qout.

To evaluate OOD Detection, we apply the commonly used maximum softmax probability (msp) detector hmsp [12], which
measures the confidence of our classifier f̃ towards a given input x̂. The goal here for a good transfer learning method, is
to produce a down-stream model f̃ which is not overconfident on semantically shifted OOD samples, while maintaining
confidence when predicting on ID samples. This goal is again immediately apparent, as we want a safe and robust model to
not (overconfidently) find a semantically dissociated OOD sample as indistinguishable from a ID sample [12, 14, 21, 22].

Model Reprogramming Model reprogramming is a resource efficient, cross-domain, framework used to re-purpose mod-
els for different task specific scenarios [3]. The model reprogramming framework takes heavy inspiration from adversarial
reprogramming, which was first introduced by Elsayed et al [10]. The goal of model reprogramming is to re-use and re-align
the data representation, from an existing model, for a separate task without fundamental changes to the model’s parameters.
Model reprogramming methods has been proven to be successful in both white-box and black-box settings [35]. Tradi-
tionally, model reprogramming methods operate by training an image/audio reprogramming function to optimally transform
continuous input data, such that the output of the model can be used to perform some other desired task [10, 41]. Addition-
ally, Neekhara et al [26] presented a reprogramming method for sequence classification models, by utilizing a context-based
vocabulary remapping function [25, 26]. To the best of our knowledge, this paper is the first model reprogramming method
tackling joint text-image pre-trained encoders in a multi-modal setting.



B. Details of Experiments
In this appendix, we first present a detailed description of the chosen OOD Generalization and OOD Detection datasets,

that we referenced in Section 3.1, in Appendix B.1. We also include a description of our software and hardware specifications
in Appendix B.4 as well as additional hyperparameter settings used to conduct our experiments in Appendix B.5.

B.1. Datasets

We present a detailed list of our OOD Generalization and OOD Detection evaluation datasets, along with a brief description
of each dataset.

CIFAR-10 OOD Generalization Benchmarks:
• CIFAR-10.1 [34] is a collection of over 2,000 test images, sampled from TinyImages, which are designed to be a minute

distributional shift from the CIFAR-10 dataset.
• STL10 [6] is a collection of over 8,000 test images, sampled from ImageNet-1k, that is commonly used in domain

adaptation studies. We carefully curate the STL10 dataset to evaluate with only the 9 semantically overlapping classes,
choosing to omit the semantically different ”monkey” class.

ImageNet-1k OOD Generalization Benchmarks:
• ImageNetV2 [31] is a collection of 10,000 test images with approximately 10 samples per class. The dataset was

sampled utilizing the same semantic labels as defined in ImageNet-1k and obtained independently from any previous
ImageNet models.

• ImageNet-A [13] is a collection of 7,500 naturally adversarial and challenging images that are sampled based on 200
semantically overlapping ImageNet-1k classes.

• ImageNet-R [11] is a collection of over 30,000 test images, based on 200 semantically overlapping ImageNet-1k classes,
that contain images of art, cartoon, graffiti, embroidery, origami, toy, sculpture, sketch, tattoo, and other rendition of the
ImageNet-1k classes.

• ImageNet-Sketch [37] is a collection of over 50,000 test images based on all 1000 of the ImageNet-1k classes with
approximately 50 images per class. Each image is a black and white sketch variant of the ImageNet-1k class.

CIFAR-10 OOD Detection Benchmarks:
• iSUN [40] is a collection of over 8,925 natural scene images sampled from the SUN dataset. We include the full set of

iSUN images when conducting OOD Detection evaluations.
• LSUN Resized [42] is a collection of 10,000 testing images, sampled from the LSUN dataset, spanning across 10

different scenes with images down-sampled to the size of (32×32). We include the full set of LSUN Resized images
when conducting OOD Detection evaluations.

• Places365 [45] contains large-scale photographs of scenes with 365 scene categories. There are 900 images per category
in the test set and we again include the full test set for OOD Detection evaluations.

• Textures [5], or Describable Textures Dataset, is a collection of 5,640 real-world texture images under 47 categories.
We include the entire set of 5640 images for OOD Detection evaluations.

ImageNet-1k OOD Detection Benchmarks:
• iNaturalist [36] is a collection of 859,000 plant and animal images spanning over 5,000 different species. Each image

is resized to have a max dimension of 800 pixels and we evaluate on 10,000 images randomly sampled from 110 classes
that are carefully chosen to be semantically disjoint from the ImageNet-1k dataset.

• SUN [39] is a collection of over 130,000 images of scenes spanning 397 categories. We evaluate on 10,000 randomly
sampled images from 50 classes that are semantically disjoint from ImageNet-1k classes, as SUN and ImageNet-1k
have overlapping semantic concepts.

• Places [45] is a collection of scene images with similar semantic coverage as SUN. We use a subset of 10,000 images
across 50 classes that are semantically disjoint from the ImageNet-1k dataset.

• Textures [5], or Describable Textures Dataset, is a collection of 5,640 real-world texture images under 47 categories.
We again include the entire set of 5640 images for OOD Detection evaluations.



Figure 3. Visual diagram of the image reprogrammer module based on the commonly used adversarial program presented by Elsayed et
al [10]. An input image is resized and padded before an additional learnable edge perturbation is added to the input image. The resulting
perturbed image is then passed through the fixed image encoder for a model forward pass.

B.2. Evaluated Methods

We compare our reprogrammer (RP) model against a zero-shot (ZS), linear-probed (LP), and full fine-tuned (FFT)
model. Each of these models are learned through their respective transfer learning techniques and are commonly used in
CLIP-based OOD evaluations. Specifically, zero-shot refers to applying the CLIP pre-trained model directly to the designated
down-stream task without any alterations to the CLIP model. In contrast, we obtain a linear-probed model by directly
optimizing a linear regression classifier on the frozen features taken from the penultimate layer of the CLIP image encoder.
Additionally, to obtain a full fine-tuned model we tune all parameters in the image encoder and classification head to fit to
the in-distribution dataset.

B.3. Evaluation metrics

For OOD Generalization, we measure all methods across the specified covariate shifted OOD datasets with accuracy as the
evaluation metric. For OOD Detection, we measure the performance of all methods across the semantically shifted datasets
with the false positive rate, when true positive rate of ID samples is 95% (FPR95), and the area under the receiver operating
characteristic curve (AUROC) as the evaluation metrics.

B.4. Software and Hardware

Software We conducted all experiments with Python 3.8.12 and PyTorch 1.11.0.

Hardware All experiments were conduced on NVIDIA GeForce RTX 2080Ti.

B.5. Hyperparameter Settings

For all fine-tuning training, we initialize with the pre-trained CLIP B/32 model and sweep over 3 learning rates using a
cosine learning rate scheduler. For linear-probing, we directly optimize a linear regression classifier on the frozen features
taken from the penultimate layer of the CLIP image encoder and sweep over (0.005, 0.002, 0.001) learning rates for 5
epochs. While for full-fine tuning, we initialize the classification head with the text encoder features derived from the class-
wise captions as specified by Wortsman [38], before sweeping over (0.00001, 0.00003, 0.0001) learning rates for 5 epochs
and optimizing all parameters in the image encoder and classification head. Lastly, for reprogrammer, we randomly
initialize both the image and text reprogramming functions and sweep over (0.0005, 0.001, 0.005) learning rates for 5 epochs.
Additionally, we set the image reprogrammer up-sampling to be 160 × 160 and 224 × 224 pixels with padding size of
64 and 32 when tuning on CIFAR-10 and ImageNet-1k respectively. For all experiments, we specified the batch size to be
128 with a warmup length of 500. Any additional hyperparameter settings can be found in the source code we provided.
In addition, all images with resolution higher than 128 × 128, were down-sampled and cropped to 128 × 128. We did this
due to CLIP’s input size limitations, the necessity for paddable pixels, and for a fair comparison over all datasets given the
down-sampling information loss. We showcase additional experiments with varying degrees of down-sampling ranging from
no down-sampling to heavy down-sampling in Appendix H.

B.6. Computational Complexity

One of the key benefit, to using model reprogramming techniques, is the minimal resource and data requirement associated
with the reprogramming functions [35]. Specifically, the computational overhead of adding reprogrammer is minimal,



Figure 4. Visual diagram of the text reprogrammer module altered from the the adversarial program as first described by Neekhara et
al [26]. An input caption is tokenized before an lookup table embedding and subsequent bias is applied. The resulting embeddings is then
passed through the fixed text encoder for a model forward pass.

as the image reprogrammer module can be decomposed into a simple masking function with a matrix addition, and the
text reprogrammer is a simply lookup with a vector addition. Subsequently, there is negligible overhead associated with
the reprogramming function during both inference and training time. Similarly, the memory complexity of maintaining the
reprogramming functions is also minimal as you are only required to maintain matrices proportional to the fixed image and
vocabulary size specified by the text-image encoder model.

C. Details of Methodology

In this appendix, we present additional visualizations to help explain the individual components of reprogrammer in
detail. We first present additional image reprogrammer details and visualizations in Appendix C.1, before moving on to
detailing the text reprogrammer component in Appendix C.2. Finally, we present a visualization showcasing the full training
schema of reprogrammer in Appendix C.3.

C.1. Image Reprogrammer

We present a visual diagram of our image reprogrammer in Figure 3. Additionally, we note that the image reprogrammer
can up-sample images to the input size of the pre-trained model. However due to restrictions in the current open sourced pre-
trained CLIP models, our image reprogrammer up-sampling is limited to being 3×224×224 dimensions or less. Additionally,
as apart of the reprogramming function ψ, the size of the up-sampling/padding function U and binary masking matrix M
are tunable hyperparameter. We present a more detailed look at the hyperparameter setting for the image reprogramming
function ψ in Appendix F.

C.2. Text Reprogrammer

Similarly, we present a visual diagram of our text reprogrammer in Figure 4. Additionally, we generate class-wise cap-
tions following closely with the experiments presented by Radford et al [29]. Specifically, we set si = “a photo of a {ci}”
where ci is the given sample class label. As an example, our text reprogrammer follows the procedures where, given a text
Labrador Retriever label, our text reprogrammer first tokenizes the string s = “a photo of a Labrador Retriever” into tokens
ts. Subsequently, the tokens ts are the passed into the Φθ function to embed the tokens into a vector v′s. Then we apply a
bias parameter b to the given vector v′s in the form of vs = v′s + b, before finally passing the vector vs through the CLIP text
encoder g to get the reprogrammed text features.

C.3. Training Reprogrammer

Finally, we present a visualization detailing the training of the reprogrammer parameters in Figure 5. We also note
that, in comparison to linear probing and full fine-tuning, reprogrammer maintains minimal additional training time
complexity. As the image reprogramming function is a

Additionally, through reprogrammer’s two-sided reprogramming, we can also forgo the process of hand curating a
label-map (a required model reprogramming technique where the model outputs are remapped to better fit the specified task).
Instead, by levering the dual reprogramming functions and the image-caption pairs, we can embed and tune the label-map as
apart of our reprogrammer.



Figure 5. Visual diagram of the reprogrammer methodology based on the CLIP joint image and text encoder training. During repro-
gramming, an image and caption pair are each independently passed through their respective reprogramming function before being passed
through the CLIP image and text encoders. A loss is then computed based on the cosine similarity of the two reprogrammed features. Then
we backpropagate and optimize each respective reprogrammer parameters.

D. Limitations
In this appendix, we discuss some limitations of our reprogrammer technique. Specifically, we address concerns

with using differing architectures in Appendix D.1 before moving on to exploring some inherent limitation with text-image
encoder models in Appendix D.2.

D.1. Differing Architectures

Within our evaluations, we leverage CLIP as the pre-trained model to which we apply our reprogrammer method.
Subsequently, a natural question arises asking how effective would our reprogrammer method be when applied to other
similar CLIP-like models with differing encoder architectures and training datasets such as BASIC [28]. But, due in large
part to our limited computational resources, as well as a lack of available open-source pre-trained model parameters, we are
unable to train or test with these comparable models. However, critically it is important to note that our reprogrammer
methodology is not inherently limited in anyway to just the open-source CLIP models. Additionally, BASIC primarily differ
from CLIP only in its scale, as BASIC can be interpreted as CLIP but with larger capacity transformer architectures alongside
a larger training dataset. Therefore, as BASIC is fundamentally similar to CLIP, we hypothesize that reprogrammer
should show similar effectiveness when applied to BASIC. Subsequently, we leave this question open for future exploration
and encourage researchers, with more readily available resources, to experiment with the reprogrammer methodology.

D.2. Text-Image Encoders

Our reprogrammer method seeks to reprogram both the image and text encoders in a CLIP model. Due in part to
the necessity for there to be paired image and text encoders, our reprogrammer method is limited to these joint text-
image encoder models. However, diverging from our reprogrammer method, we can leverage components present in
reprogrammer in combination with other transfer learning techniques. Specifically, Kumar [20] showed how one can
mitigate full fine-tuning distortions by simply tuning the classification head first before fully fine-tuning the model. Sim-
ilarly, the image reprogramming function can be combined with linear-probing or full fine-tuning to create another set of
transfer learning techniques. These reprogrammer plus methods could also have similar out-of-distribution benefits that
we observed here in our paper, and could also potentially be applied to other non-CLIP pre-trained models. We leave this
area open for future exploration.

D.3. Output Space Dimensionality

Another potential limitation is the effectiveness of reprogrammer with respect to higher output dimensionality tasks.
Specifically, we have observed that model reprogramming techniques generally work significantly better on low output di-



Table 3. ImageNet Generalization Results OOD Generalization performance comparison between zero-shot, linear-probing, full fine-
tuning, and reprogrammer methods. All methods utilize the CLIP B/32 architecture fine-tuned on ImageNet-1k as the in-distribution
dataset. The description of the four covariate shifted OOD datasets is provided in Appendix B.1. ↑ indicates larger values are better, while
↓ indicates smaller values are better. All values are percentages and bold values are the superior results.

Din Method
ImageNet-1k ImageNetV2 ImageNet-A ImageNet-R ImageNet-S

Accuracy Accuracy Accuracy Accuracy Accuracy
↑ ↑ ↑ ↑ ↑

No Tuning Zero-shot (ZS) 59.44 52.79 11.82 43.48 38.61

ImageNet
Linear-probing (LP) 72.43 61.35 10.71 41.58 38.19

Full Fine-tuning (FFT) 73.14 60.98 6.41 32.71 32.83

Reprogrammer (RP) 72.10 61.28 12.58 44.30 39.40

mensionality ID tasks like the 10-way classification in CIFAR-10. However, with higher output dimensionality tasks like
the 1000-way classification in ImageNet-1k, model reprogramming techniques typically needs more rigorous tuning and is
generally less able to strictly outperform other transfer learning techniques. This limitation subsequently is present in our
reprogrammer method as, although reprogrammer still shows improvements in the provided ImageNet benchmarks,
there are less consistent improvements in specific OOD tasks. An intuition approach of tackling this issue would be to
replace our traditional and simple reprogramming functions with stronger reprogramming functions. However, additional
experimentation needs to be conducted and we leave this question open as a goal for future exploration.

E. ImageNet Experiments

E.1. Datasets

In-distribution Dataset For this series of experiments, we tune our model with the ImageNet-1k [7] dataset as the in-
distribution (ID) dataset. This dataset is another commonly used ID dataset for OOD Generalization and OOD Detection
experiments. Specifically, the ImagetNet-1k dataset contains over 1.2 million training images spanning 1000 different real-
world objects such as species of dogs, chairs, and boats.

OOD Generalization Datasets For the given model tuned on ImageNet-1k, we evaluate the OOD Generalization perfor-
mance on four frequently used OOD Generalization benchmarks. Specifically, we evaluate on ImageNetV2 [31], ImageNet-
R [11], ImageNet-A [13], and ImageNet-Sketch [37]. All these datasets contains images derived from the same semantic
label as in ImageNet-1k. For example, these datasets may include a sketched version of a Labrador Retriever, a cartoon
drawing of a strawberry, or a photo of a toy duck (see Appendix B.1 for more detail).

OOD Detection Datasets For the model tuned with ImageNet-1k, we use the large-scale ImageNet OOD detection bench-
mark proposed by Huang et al [15]. Specifically, we evaluate on four OOD datasets which are subsets from the iNatural-
ist [36], SUN [39], Places [45], and Textures [5] datasets. These datasets are carefully curated so that there is no semantic
overlap with respect to the ImageNet-1k dataset (see Appendix B.1 for more detail).

E.2. Experimental Results

Out-of-distribution Generalization We present the ImageNet results for OOD Generalization in Table 3. Specifically,
in Table 3 we report the accuracy of our reprogrammer method in comparison with zero-shot, linear-probing, and full
fine-tuning when tuned on the ImageNet-1k dataset. First, we observe that, similar to our CIFAR-10 experiments, full fine-
tuning outperforms zero-shot, linear-probing, and reprogrammer on the ID ImageNet task. This is again consistent with
expectations set by prior works. We also observe that for our OOD datasets, reprogrammer consistently outperforms both
linear-probing and full fine-tuning on all of our ImageNet OOD Generalization benchmarks. Additionally, we can see that full
fine-tuning in particular, significantly underperforms on OOD Generalization tasks. This matches with our intuition, that (1)
fine-tuning can degrade the good pre-training representations needed for OOD Generalization and (2) reprogrammer can
help covariate-shifted distributions better align with the in-distribution sample space resulting in better OOD Generalization.
Furthermore, we conduct an additional ablation study visualizing the better OOD Generalization alignments in Appendix F.



Table 4. ImageNet OOD Detection Results OOD Detection performance comparison between zero-shot, linear-probing, full fine-tuning,
and reprogrammer methods using the msp [12] detector. All methods utilize the CLIP B/32 architecture fine-tuned on Image-1k as the
in-distribution datasets. A description of all the semantically shifted OOD datasets is provided in Appendix B.1. ↑ indicates larger values
are better, while ↓ indicates smaller values are better. All values are percentages and bold numbers are the superior results.

Din Method
iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

No Tuning ZS 53.96 85.15 64.89 81.26 65.76 79.30 70.05 77.03 63.67 80.69

ImageNet
LP 51.15 88.25 78.68 74.58 76.42 75.15 70.25 78.71 69.12 79.17

FFT 71.94 81.37 80.29 74.01 79.97 74.54 78.28 74.80 77.62 76.18

RP 56.85 85.97 75.68 74.99 74.80 74.84 70.51 77.43 69.46 78.31

Out-of-distribution Detection We present our ImageNet results for OOD Detection in Table 4. Specifically, in Table 1,
we report the OOD Detection performance on the four semantically shifted ImageNet-1k OOD datasets as well as their
average. Again, for a fair comparison, we use the same commonly used baseline msp detector across all experiments as a
way to gauge the level of overconfidence the zero-shot, linear-probed, full fine-tuned, and reprogrammer model has on
semantically shifted OOD samples. We can see that the zero-shot model outperforms all of our fine-tuned models, with full
fine-tuning performing the worse by in large. This again is is consistent with our hypothesis that transfer learning techniques
can degrade the necessary diverse pre-training representations needed for OOD Detection. Additionally, we hypothesize
that by fitting to an ID task we are implicitly restricting and subsequently degrading the OOD Detection performance of the
diversely pre-trained model. This also potentially indicates that transfer learning techniques should be solemnly used when
attempting to perform OOD Detection tasks. Again, we leave this question open for future exploration.

F. Ablation Studies
Reprogrammer Padding Size In this ablation, we evaluate the effectiveness of our reprogrammer model as we adjust
the image reprogrammer padding size. The image reprogrammer padding size refers to the set of hyperparameters, in our
image reprogramming function ψ, that controls the amount of border and padding we choose to perturbed. Subsequently,
the greater the reprogramming padding size the more the image will be subjected to the perturbations set by the image
reprogrammer. We show the effects of the reprogramming padding size as we increase the allowed border pixel from 30 to
140 in Figure 6. Specifically, we show the effects of the padding size across both our CIFAR-10 benchmarks (Figure 6a) and
ImageNet-1k benchmarks (Figure 6b). Comparing our ablation results, we can see that generally the optimal range of padding
sizes for our CIFAR-10 reprogrammed model is larger than that of our ImageNet-1k reprogrammed model. We hypothesize
that this is due to the lower resolution images present within the CIFAR-10 benchmarks, forcing our reprogrammer to be
more aggressive when perturbing the images in order to offset the lower resolution samples.

(a) Reprogrammer Padding Size
(CIFAR Benchmarks)

(b) Reprogrammer Padding Size
(ImageNet Benchmarks)

Figure 6. Ablation on the effectiveness of our reprogrammer method as we adjust the image reprogramming padding size. The higher
the padding size indicts the more the input image is subjected to the reprogramming function.



G. Societal Impact
The goal of our project is to improve the safety and robustness of transfer learning techniques on large pre-trained machine

learning models. We believe that improving these aspects can benefit a wide range of societal fields. Given that many modern
real-world models heavily rely on classification, these safety and robustness issues are critical to any system ranging from
consumer and business applications to autonomous vehicles and medical imaging. We hope that by showcasing this work
we can provide researchers with an additional tool when tackling these challenging problems. Although we do not anticipate
any negative repercussions of our work, we hope to continue to observe and build on top of this method in the future.

H. Down-sampling Experiments
In this appendix, we present our down-sampling experiments showcasing that our method isn’t limited by the down-

sampling step we implemented within our experiments. Specifically, in Table 5 we show the OOD Generalization perfor-
mance of reprogrammer and in Table 6 we show the OOD Detection performance of reprogrammer as we apply
different degrees of down-sampling to training and testing datasets.

Table 5. Down-sampling OOD Generalization Results OOD Generalization performance comparison between differing down-sampling
severity. All methods utilize the CLIP B/32 architecture and were fine-tuned on the ImageNet-1k dataset down-sampled to the specified
resolution. Similarly, the evaluation was completed using, if available, the validation dataset down-sampled to the specified resolution.
A description of the four covariate shifted OOD test datasets is provided in Appendix B.1. ↑ indicates larger values are better, while ↓
indicates smaller values are better. All values are percentages and bold numbers are superior fine-tuning results.

Down-
sampling

Size
Method

ImageNet-1k ImageNetV2 ImageNet-A ImageNet-R ImageNet-S
Accuracy Accuracy Accuracy Accuracy Accuracy

↑ ↑ ↑ ↑ ↑

64 × 64

Zero-shot 50.632 44.22 6.12 34.547 28.556

Linear-probing 65.322 53.61 5.627 36.19 29.354
Full Fine-tuning 70.33 58.33 5.28 30.55 29.018

Reprogrammer 65.814 54.71 7.08 36.923 30.653

96 × 96

Zero-shot 57.284 50.59 9.813 41.043 35.587

Linear-probing 70.464 58.89 9.16 39.973 35.517
Full Fine-tuning 72.228 60.68 5.60 31.9 32.249

Reprogrammer 70.244 59.27 11.00 41.777 36.906

128 × 128

Zero-shot 59.44 52.79 11.82 43.48 38.61

Linear-probing 72.43 61.35 10.71 41.58 38.19
Full Fine-tuning 73.14 60.98 6.41 32.71 32.83

Reprogrammer 72.10 61.28 12.58 44.30 39.40

160 × 160

Zero-shot 60.14 53.46 12.893 44.36 39.932

Linear-probing 73.142 61.86 11.787 42.167 39.27
Full Fine-tuning 73.39 61.59 6.227 32.877 33.331

Reprogrammer 72.934 61.91 14.07 44.43 40.41

192 × 192

Zero-shot 60.796 53.84 13.8 44.86 40.294

Linear-probing 73.486 62.03 11.907 42.093 39.425
Full Fine-tuning 73.764 61.86 6.427 32.137 32.135

Reprogrammer 73.08 62.36 14.73 44.57 40.73

224 × 224

Zero-shot 61.896 54.71 15.267 46.713 40.83

Linear-probing 74.882 62.45 12.6 42.217 39.944
Full Fine-tuning 75.071 62.03 6.387 32.48 33.469

Reprogrammer 74.118 62.65 15.32 45.09 40.86



Table 6. Down-sampling OOD Detection Results OOD Detection performance comparison between differing down-sampling severity.
All methods utilize the CLIP B/32 architecture fine-tuned on the Image-1k dataset down-sampled to the specified resolution. Similarly, all
semantically shifted OOD datasets were also down-sampled to the specified resolution and a description of each OOD datasets is provided
in Appendix B.1. ↑ indicates larger values are better, while ↓ indicates smaller values are better. All values are percentages and bold
numbers are the superior fine-tuning results.

Down-
sampling

Size
Method

iNaturalist SUN Places Textures Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

64 × 64

ZS 63.57 81.3 75.1 77.8 74.34 76.14 73.67 75.82 71.67 77.77

LP 65.44 84.62 84.61 70.23 83.48 70.79 76.35 76.51 77.47 75.54
FFT 74.82 79.44 81.29 73 80.55 73.45 80.96 72.95 79.4 74.71

RP 65.42 83.68 79.96 72.05 80.13 71.86 77.78 74.72 75.82 75.58

96 × 96

ZS 57.5 83.7 67.13 80.53 68 78.77 71.13 76.64 65.94 79.91

LP 54.21 87.46 80.32 73.77 77.94 74.18 72.36 78.28 71.21 78.42
FFT 73.33 80.55 80.89 73.43 80.03 74 80.09 73.75 78.58 75.43

RP 56.76 85.62 77.19 73.86 76.46 73.91 73.07 76.78 70.87 77.54

128 × 128

ZS 53.96 85.15 64.89 81.26 65.76 79.30 70.05 77.03 63.67 80.69

LP 51.15 88.25 78.68 74.58 76.42 75.15 70.25 78.71 69.12 79.17
FFT 71.94 81.37 80.29 74.01 79.97 74.54 78.28 74.80 77.62 76.18

RP 56.85 85.97 75.68 74.99 74.80 74.84 70.51 77.43 69.46 78.31

160 × 160

ZS 52.98 85.38 63.57 81.5 64.36 79.63 69.34 77.23 62.56 80.93

LP 50.42 88.37 77.53 74.94 75.17 75.65 68.55 79.01 67.92 79.49
FFT 71.83 81.15 81.55 73.26 80.35 74.2 78.79 74.43 78.13 75.76

RP 56.25 85.92 74.55 75.69 72.37 76.27 67.98 77.93 67.79 78.95

192 × 192

ZS 53.57 85.22 63.75 81.37 63.04 80.16 68.99 77.44 62.34 81.05

LP 50.28 88.36 78.02 74.89 74.62 76.25 69.04 78.96 67.99 79.62
FFT 71.95 81.09 81.43 73.56 81.11 74.12 79.2 74.6 78.42 75.84

RP 55.77 85.99 74.48 75.31 71.30 76.79 69.24 77.8 67.70 78.97

224 × 224

ZS 53.75 85.58 62.89 81.65 63.82 80.13 68.19 77.67 62.16 81.26

LP 50.88 88.18 79.14 74.92 75.9 76.02 67.73 79.35 68.41 79.62
FFT 72.14 80.89 80.98 74.06 80.69 74.58 79.04 74.98 78.21 76.13

RP 55.56 85.82 73.89 76.25 70.32 77.63 68.05 78.28 66.95 79.5


