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Abstract

When considering the performance of a pre-trained
model, transferred to a down-stream task, it is important to
account for both the model’s generalization and detection
capabilities on out-of-distribution (OOD) samples. In this
paper, we unveil the hidden costs of intrusive fine-tuning
techniques. Specifically, we show that (1) common fine-
tuning techniques can distort not only the representations
necessary for domain generalization (OOD Generaliza-
tion), but also the representations necessary for detecting
semantic shifted OOD samples (OOD Detection). Addition-
ally, we propose a novel reprogramming approach called
reprogrammer which attempts to mitigate these degra-
dations found in common fine-tuning techniques. We show
that our reprogrammer method is (2) less intrusive and
can lead to better retention of pre-training representation.
Subsequently, by maintaining more pre-training represen-
tation, we have found that reprogrammer performs bet-
ter holistically when accounting for the in-distribution (ID),
00D Generalization, and OOD Detection performances of
the down-stream model.

1. Introduction

There are many fundamental hurdles obstructing re-
searchers from improving OOD Generalization and OOD
Detection performances in deep learning networks. These
challenges can range from difficulties in encapsulating co-
variant (domain) shifts, to overconfidence when predicting
on semantically shifted samples [24, 27, 33]. One frame-
work of training deep learning models, that has shown im-
pressive OOD Generalization and OOD Detection perfor-
mance, is large text-image supervised pre-trained models
[16,28,29].

However, recently it has been made more aware that
common transfer learning techniques can distort the strong
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representations learned during pre-training, resulting in a
degradation in specifically the model’s OOD Generalization
performance [ 1,20, 38]. In this paper, we present evidence
showing that common transfer learning methods, such as
linear-probing (optimizing just the classification head) and
full fine-tuning (optimizing all model parameters), each
have their own strengths and hidden costs in terms of ID
and OOD performances. More specifically, we present ev-
idence showing that these common transfer learning tech-
niques can degrade not only OOD Generalization but also
OOD Detection performance. This subsequently beckons
the question can we build a different transfer learning tech-
nique that is less intrusive and more robust to both covariate
and semantically shifted OOD samples?

We tackle this question by exploring and altering a dif-
ferent paradigm of transfer learning called model repro-
gramming [3]. By leveraging and altering some key com-
ponents from model reprogramming, we show that it is
possible to reprogram a text-image pre-trained model to a
down-stream ID task. We also show that, due to the less
intrusive nature of reprogramming, our method is better
able to maintain pre-training representation, subsequently
leading to better OOD Generalization and OOD Detection
performances. Formally, we propose reprogrammer, a
novel reprogramming approach that leverages two different
modalities of model reprogramming to reprogram both the
image encoder and the text encoder simultaneously.

We demonstrate the hidden costs and trade-offs of com-
mon fine-tuning techniques and reprogrammer in Fig-
ure 1. Additionally, to our knowledge, we are the first to
take this step in applying model reprogramming techniques
to multi-modal text-image encoder models.

2. Methodology

In this section, we first start by introducing the im-
age reprogrammer module before moving to the text re-
programmer module. After which we will present the full
reprogrammer transfer learning technique. We also pro-
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Figure 1. Radar charts showcasing the trade-offs in ID, OOD Generalization, and OOD Detection performances between Zero-shot,
Linear-probing, Full Fine-tuning, and Reprogrammer techniques. All results are averaged based on the specified CIFAR benchmarks,
as described in Section 3.1, and to quantify the cost-performance trade-offs, we report the average score normalized across all metrics.

vide more reprogrammer details in Appendix C.

2.1. Image Reprogrammer

Consider just the CLIP image encoder f : I — RY**
where b is the input image batch size and £ = 512 is the
CLIP feature size. To apply reprogramming, we leverage
the commonly used adversarial program first described by
Elsayed et al [10], to which we define as the reprogram-
ming function . The reprogramming function ¢ is applied
to the input image pre-forward pass through the CLIP im-
age encoder f. Critically, the reprogramming function 1) is
not specific to any singular input image, rather ¢ will be
consistently applied to all images.

Formally, we define our reprogramming function ) as:

$(X) = U(X) + tanh(W © M) (1)

where U/ denotes an image up-sampling then zero-padding
function, W € R4* %3 i5 the image reprogrammer parame-
ters that is to be learned, d is the size of CLIP’s input width
and height, ® denotes the Hadamard product, and M is a
binary masking matrix. Specifically, we define the binary
masking matrix M as O for positions where we wish to im-
plant the original image, and 1 for positions that we choose
to reprogram.

2.2. Text Reprogrammer

Now we consider the CLIP text encoder g : S — R®*¥
where b is the input text batch size and k£ = 512 is the CLIP
feature size. Additionally, we define our text input s as a
sequence of tokens s = {s1, ..., 55|} Where s; is the vocab-
ulary index of the ' token in the vocabulary list Vs. To
apply reprogramming to a text input, we leverage and alter
a version of the adversarial program as first described by
Neekhara et al [26].

Formally, we define our text reprogramming function as
®g , where @y ;, is a simple look-up embedding and bias on
the tokens {s;} that can be parameterized by the learnable
embedding tensor 6 and the bias parameter b. Specifically,

we define our § € RIV51X4 and b € R? where our default
vocabulary size is |Vg| = 49408, which is the expected vo-
cabulary size for the CLIP text encoder. Similarly, as with
all reprogramming functions, the text reprogramming func-
tion is not specific to any singular text input, rather ®¢ ;, will
be consistently applied to all text inputs.

2.3. CLIP Model Reprogrammer

Finally, to train our given image and text reprogramming
functions ¢ and ®g ;, we define our training objective as:

W*a 0*, b* = argmax (Slm(f(wW(x))a g((I)H,b(S)))) (2)
W,0,b

where (x, s) is an image and caption pair obtained from our
training set D;,,, f and g are the CLIP image and text en-
coders respectively, sim is the cosine-similarity function,
and W, 0, b are the learnable parameters encapsulating our
reprogramming functions 1y, ®¢ ;. In practice, rather than
directly optimizing for cosine similarity, we follow closely
with the optimization schema of a symmetric cross entropy
loss as was implemented in CLIP pre-training [29].

After tuning our reprogrammer parameters W, 0,0
we perform classification during inference time, on an in-
put image & with m class labels C' = {cy, ..., ¢;,, }, similar
to that of zero-shot CLIP. Specifically, we make a prediction
y through:

y = argmax(sim(f (Yw+ (2)), 9(Po- - (s:))  (3)
where s; is the class-wise captions such that s; =
“a photo of a {¢;}” and 9y« and ®y- 4+ are our learned re-
programming functions parameterized by W*, 6*, and b*.

3. Experiments

In this section, we first describe our experimental setup
for OOD Generalization and OOD Detection in Section 3.1,
before evaluating our reprogrammer method against
other common transfer learning techniques in Section 3.2.



Table 1. CIFAR Detection Results OOD Detection performance comparison between zero-shot (ZS), linear-probing (LP), full fine-tuning

(FFT), and reprogrammer (RP) methods using the msp [

] detector. All methods utilize the CLIP B/32 architecture fine-tuned on

CIFAR-10 as the in-distribution datasets. A description of all the semantically shifted OOD datasets is provided in Section 3.1. 1 indicates
larger values are better, while | indicates smaller values are better. All values are percentages and bold values are the superior results.

iSUN LSUN Resize Places365 Textures Average
D;, | Method [ FPR95 AUROC | FPR95 AUROC | FPR95 AUROC | FPR95S AUROC | FPR95S AUROC
1 t 4 t 1 t 4 T 4 T

NoTuning | 7S | 2715 9508 | 2441 9561 | 1587  97.12 | 3236 9260 | 2495  95.10
LP 3674 9457 | 2838 9575 | 2465 9673 | 30.67 9293 | 3236 9499

CIFAR-10 | FFT | 4547 9278 | 4295 9341 | 4092 9406 | 4485 9230 | 4289 9340
RP 2058 9553 | 2596 9608 | 1594  97.63 | 30.13 9382 | 2540 9577

Table 2. CIFAR Generalization Results OOD Generalization 3.2. Results

performance comparison between zero-shot (ZS), linear-probing
(LP), full fine-tuning (FFT), and reprogrammer (RP) methods
with CIFAR-10 as the in-distribution dataset.

Din | Method |- ey (s (9
No Tuning |  ZS 8923 | 8330 97.40
LP 94.89 90.05 96.34
CIFAR-10 | FFT 96.24 91.05 55.90
RP 95.39 91.55 96.71

Additionally, we present further ablations in Section 3.3 and
Appendix F, along with more experimental results in Ap-
pendix E.

3.1. Experimental Setup

In-distribution dataset We tune our model with CIFAR-
10 [19] as the in-distribution (ID) dataset, which is a com-
monly used ID dataset for both OOD Generalization and
OOD Detection experiments. The CIFAR-10 dataset con-
tains labeled (32x32) resolution images covering a range
of real-world objects such as horses, cats, and airplanes.

Out-of-distribution Generalization We evaluate the
OOD Generalization performance on two standard covari-
ate shifted OOD datasets. Specifically, we evaluate the gen-
eralization accuracy on the CIFAR-10.1 [34] and STL10
[6] datasets. Both these datasets contains images derived
from semantically matching CIFAR-10 classes.

Out-of-distribution Detection For all compared down-
stream models, we evaluate using the msp detector against
four commonly used OOD benchmarks. More specifi-
cally, we evaluate on the iSUN [40], LSUN Resized [42],
Places365 [45], and Textures [5] datasets. These OOD
datasets span a wide range of objects including fine-grained
images, scene images, and textural images. Additionally,
these datasets are carefully chosen so that there is no se-
mantic overlapping with respect to the CIFAR-10 dataset.

Out-of-distribution Generalization We present our
main results for OOD Generalization in Table 2, where
we compare the OOD Generalization accuracy of our
reprogrammer method in comparison to linear-probing
and full fine-tuning.

We first observe that full fine-tuning outperforms zero-
shot, linear-probing, and reprogrammer on the ID
CIFAR-10 task, which is consistent with expectations set
by prior works. However, we see that for the OOD
Generalization tasks, reprogrammer consistently out-
performs both linear-probing and full fine-tuning on each
of the OOD Generalization benchmarks, with full fine-
tuning in particular performing significantly worse in the
STL10 OOD Generalization task. This also matches with
intuition from prior work were naive fine-tuning can dis-
tort the diverse and beneficial pre-training representations
necessary for OOD Generalization tasks [20].  Subse-
quently, given that reprogrammer encourages minimal
alterations to the pre-trained parameters, we can observe
that reprogrammer outperforms every other common
transfer learning techniques on all of the given OOD gener-
alization tasks.

Out-of-distribution Detection We present our main re-
sults for OOD Detection in Table 1. Specifically, we report
the OOD Detection performances of our fine-tuned models
across four semantically shifted OOD datasets, as well as
the average across all four datasets. For a fair comparison
we fix the OOD detector, leveraging the commonly used
baseline msp detector [12], across all experiments as a way
to gauge the level of overconfidence the zero-shot, linear-
probed, full fine-tuned, and reprogrammer down-stream
models have on semantically shifted OOD samples.
Firstly, we can see that both linear probing and full fine-
tuning perform worse when compared with the zero-shot
model. This supports our hypothesis that naive fine-tuning
methods can degrade the diversely pre-trained representa-
tions needed for detecting semantically shifted OOD sam-
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Figure 2. UMAP visualization comparing the feature spaces between linear-probed and reprogrammer models using 500 randomly

sampled covariate shifted (CIFAR-10.1) images.

ples. Secondly, we can also observe that reprogrammer
outperforms every other fine-tuning technique on all of the
given OOD Detection tasks. This additionally indicates to
us that reprogrammer is better able to achieve this goal
of maintaining necessary pre-training representations for a
more semantically robust down-stream model.

3.3. Ablation Studies

Visualizing the Reprogrammed Feature Space In this
ablation, we provide additional insights showcasing how
reprogrammer can better align covariate shifted OOD
samples. In Figure 2 we present UMAP visualizations
comparing the feature space between the linear-probed
and reprogammer models on covariate shifted OOD im-
ages [23]. Observing these visualization, we can see that
our reprogrammer model is producing more separa-
ble, and more tightly bound, clusters of covariate fea-
tures. This again supports our intuition that the model re-
programming technique is aligning the OOD samples to
the already strongly tuned ID space, therefore enabling
reprogrammer to better classify on covariate shifted
OOD samples.

4. Conclusion

In this paper, we showcased that maintaining pre-
training representation is critical to the robustness of the
down-stream model with respect to both covariate and se-
mantically shifted OOD samples. Additionally, we pro-
pose an alternative approach for transferring text-image en-
coder models called reprogrammer that attempts to min-
imize the distortion to the model’s pre-training representa-
tions. Experimental results further showcases the strength
of reprogrammer when compared to other common fine-
tuning techniques. We hope that our work provides ad-

ditional insights into the hidden costs of common transfer
learning techniques, and inspire future works to leverage
reprogramming approaches for transfer learning.
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