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Abstract

Current works on knowledge distillation (KD) mainly
focus on preserving the accuracy. However, other essen-
tial model properties, such as adversarial robustness, can
be lost during distillation. This paper studies how and
when the adversarial robustness can be transferred or im-
proved from a teacher model to a student model in KD.
We show that standard KD fails to preserve adversarial ro-
bustness, and we propose KD with input gradient alignment
(KDIGA) for remedy. Under certain assumptions, we prove
that the student model using our proposed KDIGA can
achieve at least the same certified robustness as the teacher
model. We also propose using KDIGA in an iterative self-
distillation (ISD) training scheme, which can achieve better
standard accuracy and adversarial robustness than adver-
sarial training (AT), without using AT or any pre-trained
robust teacher. Our experiments contain a diverse set of
teacher and student models evaluated on ImageNet and
CIFAR-10 datasets, including CNNs and ViTs. Our anal-
ysis shows several novel insights that (1) With KDIGA and
ISD, students can preserve or even exceed the adversarial
robustness of the teacher model, even when their models
have fundamentally different architectures; (2) KDIGA en-
ables robustness transfer to pre-trained students, such as
KD from an adversarially trained ResNet to a pre-trained
ViT, without loss of clean accuracy; and (3) Our derived lo-
cal linearity bounds for characterizing adversarial robust-
ness in KD are consistent with the empirical results.

1. Introduction
Knowledge distillation (KD) [14] is a popular machine

learning framework for teacher-student training. To illus-
trate the critical but overlooked failure mode of standard
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Figure 1. Clean accuracy (%) and robust accuracy (%) of Mo-
bileNetV2 obtained by different methods against 20-step PGD at-
tack with an attack radius of 8/255 on CIFAR-10. “ST” stands for
standard training, “KD” stands for knowledge distillation, “AT”
and “TRADES” are adversarial training methods. (Scores are
lower than their best reported because we use MobileNetV2 for
comparison. See Table 1 for details.) KD uses WideResNet trained
with TRADES as the teacher. Our method does not require robust
teacher or adversarial training.

KD, in Figure1 we show that it cannot preserve the adver-
sarial robustness of the teacher model, and propose to use
input gradient alignment in KD (we name it KDIGA) and it-
erative self-distillation (ISD) for improving/preserving both
standard and robust accuracy. In addition to empirical ev-
idence, in this paper, we also prove that our method can
make the student achieve at least the same certified robust-
ness as the teacher model under certain assumptions. When
comparing our method with other baselines on ImageNet
and CIFAR-10 datasets, the results show substantial im-
provement in the adversarial robustness of the student mod-
els obtained by our method.

To demonstrate the generality of our proposed method,
we further study the transferability of adversarial robustness



between convolutional neural networks (CNNs) and vision
transformers (ViTs). We show that our method enables the
transfer of adversarial robustness between these two fun-
damentally different architectures, and it can improve the
adversarial robustness of a pre-trained ViT without sacrific-
ing clean accuracy. We also extend our theoretical analysis
and use local linearity measures to characterize the transfer
of adversarial robustness in KD, and show that our derived
performance bounds match the trends of the empirical ro-
bustness.

Inspired by the theoretical guarantee that the student can
achieve at least the same certified robustness as the teacher
in certain conditions, we further apply KDIGA with itera-
tive self-distillation (ISD) training, which boosts both the
clean accuracy and the robust accuracy even without
a pre-trained robust teacher, nor adversarial training.
Figure 1 shows our model significantly outperforms adver-
sarially trained models.
Our Contributions:
• We propose to use KD with input gradient alignment

(KDIGA) to train both accurate and adversarially ro-
bust student models. For instance, using KDIGA on
CIFAR-10/ImageNet, the robust accuracy of the stu-
dent model can be significantly increased from 5.97%→
25.35%/1.5%→37.5% compared with KD, while simul-
taneously achieving even better clean accuracy.

• We propose a novel and efficient training scheme that
combines KDIGA with iterative self-distillation (ISD),
which achieves clean accuracy of 94.43% and robust ac-
curacy of 50.77% against 20-step PGD attack on CIFAR-
10 using a small model (MobileNetV2), without requiring
any robust teacher, nor adversarial training.

• We show that adversarial robustness can be trans-
ferred between fundamentally different architectures with
KDIGA, e.g. ResNet18 and ViTs.

• We prove that the student model distilled with KDIGA
can achieve at least the same certified robustness as the
teacher with some mild assumptions, and provide a bound
for characterizing adversarial robustness in KD, which is
consistent with the empirical results.

2. Robust Student Training

2.1. Knowledge Distillation with Input Gradient
Alignment (KDIGA)

Suppose fs(x) : RD → RN is the student model and
f t(x) : RD → RN is the teacher model, where D is the
input dimension and N is the number of classes. Standard
knowledge distillation aims to train the student model fs

that matches the logits of teacher model f t, which won’t
provide any robustness guarantees both empirically and the-
oretically. Intuitively, the gradient with respect to input pix-
els captures how the prediction changes under small pertur-

bation, which is directly related to the definition of robust-
ness. Therefore, in KDIGA, we force the student to learn
both the logits and gradient knowledge from the teacher
model with the objective:

argminfs LIGA(f
s;x, y, f t),

where (x, y) ∈ D is the input image and the corresponding
label in the training dataset, and

LIGA = λCELCE(f
s(x), y) + λKLT

2LKL(f
s(x)/T, f t(x)/T )

+λIGA∥∇xLCE(f
s(x), y)−∇xLCE(f

t(x), y)∥2,

where LCE ,LKL stand for cross-entropy loss and KL-
divergence loss, λCE , λKL and λIGA are scalar values, T
is the temperature factor, and ∥ · ∥2 is the ℓ2 norm. Pseudo
code of KDIGA is shown in Alg. 1 in Appendix G.

2.2. Iterative Self-distillation (ISD)

Under certain assumptions, we prove in Section 2.3 that
the student’s adversarial robustness can be at least as the
teacher’s when applying KDIGA in the ideal situation. This
inspires us to iteratively boost the adversarial robustness us-
ing KDIGA combined with ISD:{

fs
l = argmin

fs

LIGA(Dropout(fs);x, y, f t
l )

f t
l+1 = fs

l

where l = 0, 1, . . . , L stands for the iteration index.
Dropout(·) means adding dropout to the last layer [27],
which we found to be useful for avoiding getting stuck in
the bad local minimum.

We consider the following two settings to choose the ini-
tial teacher f t

0 for ISD:
Without initial robust teacher (WoT): Train f t

0 from
scratch using standard training with cross-entropy loss:

f t
0 = argminfs LCE(f

s(x), y). (1)

Then ISD starts by treating f t
0 as the initial teacher.

With initial robust teacher (WiT): In the WiT setting, a
pre-trained robust teacher is loaded as the initial teacher f t

0.
The robust teacher can be obtained from adversarial train-
ing with different model architectures. The ISD starts from
distilling from f t

0 in the first loop and then conducts self-
distillation in the following loops.

The pseudocode of ISD in WoT and WiT settings are
shown in Algorithm 2 and Algorithm 3 respectively in Ap-
pendix G.

2.3. Preservation of Certified Robustness

In this section, we prove that using KDIGA, the stu-
dent model can provably achieve as good robustness as the
teacher model’s in ideal situations.



Definition 1. (ϵ-robust) Classifier f(x) : RD → RN is
ϵ-robust if

argmax f(x+δ) = argmax f(x), ∀x ∈ D,∀δ ∈ [0, ϵ]D.

Under mild assumptions, we aim to show that if the
teacher model has a robust radius of ϵ, then the student
model is at least ϵ-robust under ideal situations. The first
assumption is the perfect student assumption in which we
suppose fs : RD → RN is a student model distilled from
the teacher model f t : RD → RN using distillation loss
L, and fs is a perfect student if L(x, y) = 0,∀(x, y) ∈ D.
The second assumption is local linearity, which assumes
that neural networks with piece-wise linear activation func-
tions are locally linear ( [4, 15, 22]) and the certified robust
area falls into these piece-wise linear regions. These two as-
sumptions collaboratively build an ideal situation of knowl-
edge distillation in which we can derive a strong property
of KDIGA that the certified robustness of the student model
can be as good as or even better than that of the teacher
model. Proposition 1 concludes our statement.

Proposition 1. Suppose the teacher model f t : RD → RN

is ϵ-robust, fs : RD → RN is a perfect student trained
using KDIGA, then fs is at least ϵ-robust.

We give a proof for Proposition 1 and illustrate why
the knowledge distillation without input gradient alignment
cannot preserve the adversarial robustness in Appendix A.

2.4. General Bound for the Adversarial Robustness
of the Student Model

In this section, we derive a general bound for the adver-
sarial robustness of the student model in KD. No assump-
tion is needed for this bound and the result applies to any
KD method. To derive this bound, we first introduce the
Local Linearity Measure (LLM, [20]) in Definition 2. The
proof for Proposition 2 can be found in Appendix B.

Definition 2. (Local Linearity Measure) The local linearity
of a classifier f(x) : RD → RN is measured by the maxi-
mum absolute difference between the cross-entropy loss and
its first-order Taylor expansion in the ϵ-neighborhood:

LLM(f,x, ϵ) = max
δ∈B(ϵ)

∣∣LCE(f(x+ δ)− LCE(f(x))− δT∇xLCE(f(x))
∣∣

Proposition 2. Consider a student model fs : RD → RN

distilled from a teacher model f t : RD → RN , then ∀δ ∈
B(ϵ),∣∣LCE(f

s(x+ δ), y)− LCE(f
t(x+ δ), y)

∣∣ ≤ γs+γt+ϕ

where γs = LLM(fs,x, ϵ), γt = LLM(f t,x, ϵ), and ϕ =
LCE(f

s(x), y)+LCE(f
t(x), y)+ϵ∥∇xLCE(f

s(x), y)−
∇xLCE(f

t(x), y)∥, and ∥ · ∥ is a norm.

Table 1. Robust accuracy (%) against 20-step PGD attack of
8/255 radius and clean accuracy (%) on the CIFAR-10 dataset.
WRN(PGD-7)‡ is trained on MNIST, and WRN(PGD-7)† on
TinyImageNet. ISD with “*” doesn’t add dropout to the last layer.
“Adv” indicates whether adversarial training is used.

Model #Params Adv Clean Robust

MNV2 (ST) 2M N 91.82 0.00
WRN (TRADES) KD−−→MNV2 2M N 92.56 5.97
WRN (TRADES) ARD−−−→MNV2 2M Y 91.65 20.73
WRN (PGD-7)† IGAM−−−→WRN 48M Y 93.20 32.40
WRN (PGD-7)‡ IGAM−−−→WRN 48M Y 93.60 43.50
WRN (PGD-7) 48M Y 87.25 45.90
WRN (TRADES) 48M Y 84.92 56.68
MNV2 (PGD-7) 2M Y 80.50 46.90
MNV2 (TRADES) 2M Y 83.59 44.79
WRN (TRADES) KDIGA−−−−→MNV2 2M N 93.03 25.35

WRN (TRADES) KDIGA-ARDC−−−−−−−−→MNV2 2M Y 92.22 25.85

WRN (TRADES) KDIGA-ARDA−−−−−−−−→MNV2 2M Y 90.67 27.50

WRN (TRADES) ISD-WiT-5∗−−−−−−→MNV2 2M N 94.14 44.42
MNV2 (ISD-WoT-1) 2M N 92.68 32.98
MNV2 (ISD-WoT-2) 2M N 94.18 34.77
MNV2 (ISD-WoT-3) 2M N 94.08 45.76
MNV2 (ISD-WoT-4) 2M N 93.84 48.05
MNV2 (ISD-WoT-5) 2M N 94.00 49.74
MNV2 (ISD-WoT-6) 2M N 94.43 50.77

3. Experiments
In this section, we evaluate our method on CIFAR-10

and ImageNet datsets. Details of settings can be found
in Appendix D. We compare our method with baselines
on CIFAR-10 and ImageNet with the corresponding results
shown in Table 1 and Table 2 respectively. For fair compar-
ison, we consider the settings where ARD (with adversar-
ial training) and IGAM (with both adversarial training and
an additional discriminator) can achieve a clean accuracy
above 90%. For the experiments on ImageNet, the ARD re-
sults are omitted because it is difficult to generalize to large-
scale datasets, which shows no convergence on ImageNet
with a very low training speed, and no result for ImageNet
is provided in [1]. Due to the limitation of computing re-
sources, we ran all experiments on ImageNet for 50 epochs
and remark that better performance could be achieved with
more training epochs or ISD training loops. We conclude
our key findings as below:
Standard KD Cannot Preserve Adversarial Robustness.
As shown in Table 1, models trained using ST or KD
are vulnerable to adversarial perturbations. The standard
knowledge distillation can hardly preserve the adversarial
robustness from teacher models The robust accuracy of KD
is 5.97% and the robust accuracy of ST is 0%.

KDIGA and ISD Improve Adversarial Robustness
without Sacrificing Clean Accuracy. As shown in Table 1,
both KDIGA and ISD achieve clean accuracy above 93%,
which is even higher than ST and KD. ISD has the highest
clean accuracy due to iterative self-distillation, where the



Table 2. Robust accuracy (%) against 40-step PGD attack and
clean accuracy (%) on the ImageNet dataset. Robust accuracy of
the teacher models is shown in brackets.

PGD Attack radius
Model Clean 0.001 0.01

ResNet18 (ST) 68.7 (-) 24.9 (-) 0.0 (-)
ViT-S/16 (ST) 77.6 (-) 55.4 (-) 1.0 (-)
ViT-S/16 (ST) KD−−→ResNet18 69.0 (77.6) 30.1 (55.4) 0.0 (1.0)
ViT-S/16 (ST) KDIGA−−−−→ResNet18 60.0 (77.6) 51.0 (55.4) 3.3 (1.0)
ViT-B/16 (ST) KDIGA−−−−→ResNet18 64.7 (76.3) 52.8 (48.9) 0.7 (0.9)
ViT-L/16 (ST) KDIGA−−−−→ResNet18 65.9 (80.0) 53.2 (55.1) 1.4 (1.8)
DEIT-S/16 (ST) KDIGA−−−−→ResNet18 63.6 (77.7) 53.1 (48.9) 1.6 (1.1)
ResNet50 (AT) KD−−→ResNet18 66.3 (63.1) 25.7 (61.9) 0.0 (49.0)
ResNet50 (AT) KDIGA−−−−→ResNet18 54.2 (63.1) 48.2 (61.9) 9.2 (49.0)
ResNet50 (AT) KDIGA−−−−→ResNet34 59.2 (63.1) 53.9 (61.9) 12.1 (49.0)
ResNet50 (AT) KDIGA−−−−→ResNet50 58.8 (63.1) 53.7 (61.9) 12.4 (49.0)
ResNet50 (AT) KDIGA−−−−→ResNet101 60.3 (63.1) 55.3 (61.9) 12.7 (49.0)
ResNet50 (AT) KDIGA−−−−→ViT-S/16∗1 77.7 (63.1) 65.3 (61.9) 11.1 (49.0)

clean accuracy is further improved with additional loops.
Adversarial training can also achieve high adversarial ro-
bustness but at the cost of clean accuracy.

Dropout Can Help Stabilize the Self-Distillation in
ISD and Avoid Getting Stuck in the Local Minimum. We
show in Appendix F that, without dropout in the last layer,
ISD can fall into bad local minimum and get stuck in the
following self-distillation loops.

KDIGA Can Scale-Up to Large-Scale Datasets We
show in Table 2 that KDIGA still works for ImageNet
and show better preservation of adversarial robustness com-
pared with KD. When distilling ResNet18 from ResNet50
(AT) and testing against 40-step PGD with a radius of 0.003,
KDIGA has a robust accuracy of 37.5% in comparison with
1.5% for KD and 2.0% for ST. And it’s the same for ViT-
S/16.

Adversarial Robustness Can Transfer Between CNNs
and Vision Transformers. According to Table 2, the ro-
bustness of ViT got improved with KDIGA, indicating we
could transfer adversarial robustness from smaller CNNs to
ViTs.

Input gradient alignment Works for Pre-trained
Models. In the experiments of “ResNet50 KDIGA−−−−−→ViT-
S/16⋆” as shown in Table 2, we take the pre-trained ViT as
the student to help the training converge in a shorter time.
This result shows the feasibility to further improve the ad-
versarial robustness of a pre-trained model using KDIGA
without harming the clean accuracy, which gives a novel
and inspiring approach to train new robust models more ef-
ficiently at less or no cost of the clean accuracy.

Students Can Obtain Even Better Adversarial Ro-
bustness than Teachers. When distilling from DEIT-

1The pre-trained student model is denoted with “*” where the distilla-
tion is conducted as fine-tuning.

Table 3. Bounds for adversarial robustness on CIFAR-10. llmϵ

is defined by Definition 2 where ϵ is the radius of perturbations.
lCE is the cross-entropy loss. ∥gs − gt∥2 calculates the l2-norm
of input gradient alignment term with the same teacher.

Model llm4/255 llm8/255 lCE ∥gs − gt∥2
MNV2 (ST) 12.413 21.691 0.364 4.099
WRN(TRADES) KD−−→MNV2 5.960 10.286 0.218 1.958
WRN(TRADES) ARD−−−→MNV2 1.326 3.034 0.261 0.569
WRN(TRADES) KDIGA−−−−→MNV2 2.561 4.914 0.235 0.587

WRN(TRADES) KDIGA-ARDC−−−−−−−−→MNV2 1.081 2.421 0.228 0.339

WRN(TRADES) KDIGA-ARDA−−−−−−−−→MNV2 1.107 2.442 0.285 0.377

S/16 to ResNet18 with KDIGA achieves robust accuracy of
53.1% while the teacher model only has 48.9% in the same
situations.

3.1. Local Linearity Bounds for Adversarial Ro-
bustness in Knowledge Distillation

Table 3 shows the bounds for adversarial robustness of
models trained on CIFAR-10. We randomly sample 1000
test samples to calculate the terms in the bounds. In ref-
erence to Table 1 and Table 3, the empirical performance
matches the theoretical insights that models with better ad-
versarial robustness have smaller values in the bounds. Ta-
ble 3 also shows that combining our method with ARD can
further reduce the bounds and induce better adversarial ro-
bustness. KD only has the lowest cross-entropy loss while
other terms are high, which can explain its failure in pre-
serving adversarial robustness, as its objective design only
focuses on improving standard accuracy.
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Appendix

A. Proof for Proposition 1
We note that the notation of δ and ϵ are reversed in this proof compared with the use in the main text.
Since f t is δ-robust, the prediction of f t(x) is invariant to the input perturbations smaller than the certified robust radius

by definition, i.e.,

argmax f t(x+ ϵ) = argmax f t(x), ∀x ∈ D, ∀ϵ ∈ (0, δ)D, (2)

where D is the task-specific data set. Denote the student model distilled from the teacher model using normal knowledge
distillation as fKD(x) : RD → RN . The loss of the normal knowledge distillation can be formulated as

LKD(x, y) = λCELCE(f
KD(x), y) + λKLT

2LKL(f
KD(x)/T, f t(x)/T ), ∀(x, y) ∈ D, (3)

where LCE is the cross-entropy loss, LKL is the KL-divergence loss which is also called the soft loss in knowledge distil-
lation, T is the temperature factor, and λCE , λKL are hyper-parameters to balance the effects of the two losses. The loss of
KDIGA is calculated by

LIGA(x, y) =λCELCE(f
IGA(x), y) + λKLT

2LKL(f
IGA(x)/T, f t(x)/T )

+ λIGA∥∇xLCE(f
IGA(x), y)−∇xLCE(f

t(x), y)∥2, ∀(x, y) ∈ D,
(4)

where f IGA is the student model, λCE , λKL and λIGA are hyper-parameters.
Without loss of generality, we set the temperature factor T = 1 for both KD and KDIGA. According to the perfect student

assumption, f IGA satisfies the following equations:
∇xLIGA(x, y)−∇xLIGA(x, y) = 0 (5)
f IGA(x)− f t(x) = 0 (6)
f IGA(x) = y, ∀(x, y) ∈ D. (7)

The cross-entropy loss is defined as

LCE(f(x), y) = − log
( exp(f(x)y)∑

j exp(f(x)j)

)
= −f(x)y + log(

∑
j

exp(f(x)j)), (8)

where f(·) is a classifier and f(x)j is the j-th prediction of the output. Then the gradient of the cross-entropy loss with
respect to the input is

∇xLCE(f(x), y) = −∇xf(x)y +∇x log(
∑
j

exp(f(x)j))

= −∇xf(x)y +
∇x(

∑
i exp(f(x)i))∑

j exp(f(x)j)

= −∇xf(x)y +

∑
i∇x exp(f(x)i)∑
j exp(f(x)j)

= −∇xf(x)y +

∑
i exp(f(x)i)∇xf(x)i∑

j exp(f(x)j)

(9)

Denote g = g(x) = ∇xf(x), α = softmax(f(x)), then

∇xLCE(f(x), y) = −g(x)y +
∑

i exp(f(x)i)g(x)i∑
j exp(fj(x))

= −g(x)y +α · g
= (α− iy) · g.

(10)



where iy = (0, · · · , 0, 1, 0, · · · , 0) is an unit vector of which the y-th element equals one. According to Eq. 6, αt = αIGA =
α. The third term in Eq. 4 for input gradient alignment is

∥∇xLCE(f
t(x), y)−∇xLCE(f

IGA(x), y)∥
=∥(αt − iy) · gt − (αIGA − iy) · gIGA∥
=∥(α− iy) · (gt − gIGA)∥.

(11)

Given α− iy ̸= 0, gt − gIGA must be 0 since α− iy and gt − gIGA are not strictly orthogonal unless gt − gIGA = 0.
According to Eq. 5, we have gt − gIGA = 0.

According to the local linearity assumption,∀x ∈ D, ∀ϵ ∈ [0, δ)H×W×C ,

f IGA(x+ ϵ) = f IGA(x) + ϵT · gIGA(x)

= f t(x) + ϵT · gt(x)
= f t(x+ ϵ) = f t(x) = f IGA(x).

(12)

Therefore, the certified robust radius of f IGA is at least δ, which proves Proposition 1.
However, the knowledge distillation without input gradient alignment cannot guarantee the adversarial robustness preser-

vation. Suppose fKD is a perfect student, we have{
fKD(x)− f t(x) = 0 (13)
fKD(x) = y, ∀(x, y) ∈ D. (14)

We point out that fKD can have different predictions around x, for example, let x̃ = x + ϵ ∈ B̊(x, δ), denote h(x) =
fKD(x)− f t(x), then h(x) = 0, ∀(x, y) ∈ D according to Eq. 13. But ∃h(x), ∃x ∈ B̊(x, δ) s.t.

argmax fKD(x) ̸= argmax f t(x) (15)

since the first-order derivative of h(x) is not constrained to be 0 in the neighbourhood of x. This means the predictions of the
student model distilled using knowledge distillation without input gradient alignment can be altered if we add perturbations
to the input image.

B. Proof for Proposition 2
We note that the notation of δ and ϵ are reversed in this proof compared with the use in the main text.∣∣LCE(f

s(x+ ϵ), y)− LCE(f
t(x+ ϵ), y)

∣∣
=
∣∣LCE(f

s(x+ ϵ), y)− LCE(f
s(x), y)− ϵT∇xLCE(f

s(x), y)

−
(
LCE(f

t(x+ ϵ), y)− LCE(f
t(x), y)− ϵT∇xLCE(f

t(x), y)
)

+
(
LCE(f

s(x), y)− LCE(f
t(x), y)

)
+ ϵT

(
∇xLCE(f

s(x), y)−∇xLCE(f
t(x), y)

)
|

≤ max
ϵ∈B(δ)

∣∣LCE(f
s(x+ ϵ), y)− LCE(f

s(x), y)− ϵT∇xLCE(f
s(x), y)

∣∣
+ max

ϵ∈B(δ)

∣∣LCE(f
t(x+ ϵ), y)− LCE(f

t(x), y)− ϵT∇xLCE(f
t(x), y)

∣∣
+ LCE(f

s(x), y) + LCE(f
t(x), y) + δ∥∇xLCE(f

s(x), y)−∇xLCE(f
t(x), y)∥.

(16)

C. Related Work
There are some recent works studying when and how adversarial robustness will transfer in different machine learning set-

tings, such as transfer learning [3, 13, 23], representation learning [2, 9] and Model-agnostic meta-learning (MAML) [25]. In
contrast, we focus on the setting of knowledge distillation. The basic Knowledge Distillation (KD) formulates the supervised
learning objective as

argmin
fs

LKD(x, y) = argmin
fs

λCELCE(f
s(x), y) + λKDT 2LKL(f

s(x)/T, f t(x)/T ) (17)



where fs is the student model, f t is the teacher model, x is a data sample and y is its label, (x, y) ∈ D, D is the training set,
LCE is the cross-entropy loss, LKL is the KL-divergence loss, λCE and λKD are constant factors to balance the two losses,
and T is a temperature factor. NoisyStudent proposed by [27] boosts the generalization performance of semi-supervised
learning by training the model iteratively and reusing the student as the next-loop teacher. The authors in [1] study the robust
transfers across different tasks and propose input gradient adversarial matching (IGAM). They train a student model that
semantically resembles the teacher’s input gradient with an additional discriminator network. In contrast, we focus on the
adversarial robustness preservation and improvement in KD.

Projected gradient descent (PGD) is one of the most commonly used adversarial attacks for both adversarial robustness
evaluation and adversarial training, which solves

argmax
∥δ∥∞≤ϵ

LCE(f
s(x+ δ), y) (18)

by iteratively taking gradient ascent:

xadv
t+1 = Clipx0,ϵ(x

adv
t + α · sgn

(
∇xLCE

(
xadv
t , y

))
), (19)

where t = 1, · · · , T , T is the number of iterations, xadv
t stands for the solution after t iterations,∇x denotes the gradient with

respect to x, and Clipx0,ϵ(·) denotes clipping the values to make each xadv
t+1 within [x0− ϵ,x0 + ϵ], according to the ℓp norm

bounded threat model. The adversarial perturbation is then obtained by δpgd = xadv
T − x0. In addition, AutoAttack ( [5]) is

an ensemble of several adversarial attacks which evaluates adversarial robustness in a parameter-free manner. One effective
way to train an adversarially robust model is adversarial training [8,16,29], which adds adversarial perturbations to the inputs
during training and forces the model to learn robust predictions. [10] follows the same idea and formulates an adversarially
robust distillation (ARD) objective using adversarial examples. However, it is computationally expensive to calculate the
PGD adversarial perturbations which is unaffordable for large dataset like the ImageNet [6]. Besides, adversarial training
reaches a high robust accuracy with a serious drop in sanity accuracy.

D. Settings
Teacher Models. We use pre-trained and publicly available neural networks of varying architectures as teacher models.

For the CIFAR-10 dataset, we use the WideResNet [28] adversarially trained with TRADES following the setting in [29] as
the teacher model. For the ImageNet dataset, we use both adversarially trained CNNs and normally trained vision transform-
ers (ViTs) as the teacher models. We use the checkpoint of ResNet50 [12] provided by [8] which is adversarially trained
with an attack radius of 4/255. We also incorporate ViTs [7] as teacher models because they are shown to have better ad-
versarial robustness than CNNs [18, 19, 24], and we are interested in the transferability of adversarial robustness between
fundamentally different architectures, i.e. CNNs and ViTs.

Student Models. For the CIFAR-10 dataset, we use MobileNetV2 [21] as the student model. For the ImageNet dataset,
we mainly use ResNet18 [12] as the student model for experiments . To study the effect of model size, we also consider
ResNet34, ResNet50 and ResNet101. In addition, we use ViT-S/16 [7] as the student model to study the transferability of
adversarial robustness from a CNN teacher to a ViT student. Unless specified, the student models are all trained from scratch.
Because the training of ViT is difficult without large-scale pre-training [7], we use the pre-trained version provided by [26]
and apply the knowledge distillation methods as a fine-tuning process.

Evaluation Metrics. Using the test sets of ImageNet and CIFAR-10, we report the best standard accuracy and the
robust accuracy against adversarial attacks of the student models. We conduct ℓ∞ norm bounded adversarial perturbations to
generate adversarial examples for evaluating robust accuracy (the pixel value is scaled between 0 to 1), where we use a 40-step
projected gradient descent (PGD) attack [16] and the parameter-free AutoAttack [5] for 1000 ImageNet test samples, and a
20-step PGD attack and AutoAttack for all CIFAR-10 test samples. Results of AutoAttack are supplemented in Appendix H.

Notation of Comparative Methods. We denote the standard knowledge distillation method as “KD”, the method pro-
posed by [1] as “IGAM”, the method proposed by [10] as “ARD”, our method without iterative self-distillation as “KDIGA”,
our method with iterative self-distillation as ‘ISD-s‘ where s stands for the number of loops we run for self-distillation, and
the two kinds of combinations of KDIGA and ARD defined in Appendix I as “KDIGA-ARDC” and “KDIGA-ARDA”. We
also compare our methods with two popular adversarial training techniques: training against a 7-step PGD adversary (PGD-
7 [17]) and TRADES [29]. Unless otherwise stated, “ST” means the model is trained following the standard approach without
distillation nor adversarial training, “TRADES” means the model is adversarially trained using TRADES, “PGD-7” means
the model is adversarially trained against a 7-step PGD adversary, “MNV2” stands for MobileNetV2, and “WRN” stands



Table 4. Robust Accuracy (%) against 20-step PGD attack with an attack radius of 8/255.

Model ISD-WoT-1 ISD-WoT-2 ISD-WoT-3
With Dropout 32.98 34.77 45.76

Without Dropout 24.32 32.69 41.11

for WideResNet. “Teacher Method−−−−→ Student” stands for the distillation from the “Teacher” to the “Student” using “Method”.
Training configurations can be found in Appendix E.

E. Training Configuration

For fair comparison, the coefficients of the cross-entropy loss and KL-divergence loss are both set to 0.5 for all distillation
baselines. For experiments on CIFAR-10, we run KDIGA for 150 epochs with an initial learning rate of 0.1 with milestones
at [50, 100] of a decreasing rate of 0.1. The SGD optimizer with a momentum of 0.9 and a weight decay of 0.0002 is used to
update the parameters. The coefficient for the input gradient alignment is 1

B , where B is the batch size. We also evaluate the
performance of ISD on CIFAR-10. We set the initial learning rate to 0.1 and the learning rate decay for fine-tuning to 0.01
as described in Section 2.2. For knowledge distillation on ImageNet, we run all distillation for 50 epochs with a batch size of
128, an initial learning rate of 0.1 for training from scratch and 0.00001 for fine-tuning, with milestones at [20, 30, 40] of a
decreasing rate of 0.1. The SGD optimizer with 0.9 momentum is used to update the model parameters, and a weight decay
of 0.0001 is applied. The coefficient of the input gradient alignment term is 103

B , where B is the batch size of the inputs. We
use 1 Nvidia Quadro RTX 6000 to run the experiments on CIFAR-10 and 4 for ImageNet.

F. Dropout in ISD

To study the effect brought by the dropout layer in ISD, we conduct a ablation study as shown in Table 4. In an extreme
situation, when apply ISD without dropout, the performance slightly drop in each loop, and we observe an early convergence
to a lower robust accuracy when training without dropout.

G. Pseudocodes of KDIGA, ISD-WoT and ISD-WiT

Algorithm 1: Pseudocode of KDIGA
Input: teacher f t, student fs

θ with trainable parameters θ, training set D, λCE , λKL, λIGA, learning rate η, # of
epochs Nepochs

Output: adversarially robust student fs
θ .

for epoch ∈ Nepochs do
for batch (x, y) ∈ D do

ps, pt ← fs
θ (x), f

t(x);
ℓs, ℓt ← LCE(ps, y),LCE(pt, y);
ℓKL ← T 2LKL(ps/T, pt/T );
gs, gt ← ∇xℓs,∇xℓt;
ℓiga ← λCEℓs + λKLℓKL + λIGA∥gs − gt∥2;
θ ← θ − η∇θℓiga;

Algorithm 2: Pseudocode of ISD-WoT
Input: number of loops L, initial learning rate η, learning rate decay factor µ.
Output: adversarially robust student fs

L.
f t
0 ← argminfs LCE(f

s(x), y) ◁ Train from scratch according to Eq. 1 with learning rate η

for l ∈ {1, . . . , L} do
fs ← Dropout(fs

l−1)◁ Add dropout to the last layer
fs
l ← argminfs LIGA(f

s;x, y, f t
l ) ◁ Fine-tune with learning rate µη according to Algorithm 1

f t
l+1 ← fs

l



Table 5. Robust accuracy (%) of student models against AutoAttack with 8/255 on CIFAR-10. The robust teacher model is WideRes-
Net [11]. We set the trade-off hyper-parameter for KD and KDIGA losses both to 0.5, and train for 15 epochs using KDIGA.

Model Epoch Clean AA(8/255)
PreActResNet18 15 75.54 41.00

Algorithm 3: Pseudocode of ISD-WiT
Input: number of loops L, initial learning rate η, learning rate decay factor µ.
Output: adversarially robust student fs

L.
Load f t

0 from a robust checkpoint
for l ∈ {1, . . . , L} do

fs ← Dropout(fs
l−1)◁ Add dropout to the last layer

if l=1 then
fs
l ← argminfs LIGA(f

s;x, y, f t
l ) ◁ Train from scratch with learning rate η according to Algorithm 1

else
fs
l ← argminfs LIGA(f

s;x, y, f t
l ) ◁ Fine-tune with learning rate µη according to Algorithm 1

f t
l+1 ← fs

l

H. AutoAttack Results
We find that the adversarial robustness obtained by vanilla KDIGA and ISD is only effective to first-order attack like PGD,

and it is still vulnerable to AutoAttack. Therefore, we propose to combine an adversarial training step to handle this problem,
i.e., we incorporate an one-step FGSM with little overhead into our script to enhance the adversarial robustness against
AutoAttack. To be specific, we reuse the input gradient computation in KDIGA for computing the adversarial perturbations
to enhance the adversarial robustness against the ensemble attack methods. Results on CIFAR10 can be found in Table 5.
We note that there will be a trade-off between the clean accuracy and the robust accuracy once having included adversarial
perturbations in the training process. As we only use perturbed images in the training to maximally reduce the overhead, the
KDIGA alignment and logits alignment in KD are also conducted on perturbed images instead of the clean images, causing
noise in this process. We also tried doing the backward propagation of distillation and input-gradient alignment losses only
on the adversarial samples where the teacher predicts correctly. However, no obvious improvement is observed.

The robust accuracy of student models against AutoAttack with different radii and clean accuracy on the ImageNet dataset
is shown in Table 6. We note that the attach radii of 0.001 and 0.003 shown in Table 6 are too small for practical robustness
evaluation. We show these results for analysis purpose only to illustrate the improvement brought by our proposed method
which is obvious with small attack radii. We would leave it a future work to explore better student model and training scheme
configurations for large datasets like ImageNet.

I. Combination with ARD
We show two ways to combine our method with adversarial training strategies for KD using ARD [10], i.e., KDIGA-

ARDC and KDIGA-ARDA. The objectives for them are

argmin
fs

LIGAC
(x, y) = argmin

fs

[λCELCE(f
s(x), y)

+λKLT
2LKL(f

s(x+ δ)/T, f t(x)/T )

+λIGA∥∇xLCE(f
s(x), y)−∇xLCE(f

t(x), y)∥2
]
,

(20)

argmin
fs

LIGAA
(x, y) = argmin

fs

[λCELCE(f
s(x), y)

+λKLT
2LKL(f

s(x+ δ)/T, f t(x+ δ)/T ) + λIGA

·∥∇xLCE(f
s(x+ δ), y)−∇xLCE(f

t(x+ δ), y)∥2
] (21)

where “IGAC” is in short for KDIGA-ARDC and “IGAA” is in short for KDIGA-ARDA, δ is an adversarial perturbation
calculated by solving Eq. 18 as inner maximization. KDIGA-ARDC is a direct combination of the original ARD formulation



Table 6. Robust accuracy (%) of student models against AutoAttack with different radii and clean accuracy (%) on the ImageNet dataset.
Robust accuracy of the teacher models are shown in brackets. The pre-trained student model is denoted with “*” where the distillation is
conducted as a fine-tuning process. Other students are all trained from scratch. “ST” means the model is trained following the standard
approach without distillation nor adversarial training. “AT” means the model is obtained by adversarial training.

AutoAttack Attack radius
Model Clean 0.001 0.003 0.005 0.01

ResNet18 (ST) 68.7 (-) 14.3 (-) 0.4 (-) 0.0 (-) 0.0 (-)
ViT-S/16 (ST) 77.6 (-) 48.1 (-) 6.0 (-) 0.5 (-) 0.0 (-)
ViT-S/16 (ST) KDIGA−−−−→ResNet18 60.0 (77.6) 47.2 (48.1) 25.0 (6.0) 10.1 (0.5) 0.7 (0.0)
ViT-B/16 (ST) KDIGA−−−−→ResNet18 64.7 (76.3) 49.6 (39.8) 19.4 (5.4) 5.0 (0.6) 0.0 (0.0)
ViT-L/16 (ST) KDIGA−−−−→ResNet18 65.9 (80.1) 49.6 (46.6) 19.1 (8.5) 5.8 (1.0) 0.0 (0.0)
DEIT-S/16 (ST) KDIGA−−−−→ResNet18 63.6 (80.1) 50.0 (0.4) 23.7 (0.0) 7.8 (0.0) 0.1 (0.0)
ResNet50 (AT) KDIGA−−−−→ResNet18 54.2 (63.1) 45.9 (47.5) 31.9 (42.5) 19.1 (35.0) 3.9 (30.0)
ResNet50 (AT) KDIGA−−−−→ViT-S/16∗ 77.7 (63.1) 65.3 (47.5) 32.6 (42.5) 13.4 (35.0) 1.1 (30.0)

with our proposed IGA loss on clean samples as an additional regularization. KDIGA-ARDA further considers perturbed
samples in IGA. Their key difference is that KDIGA-ARDC only aligns student’s predictions on perturbed samples with
teacher’s predictions on clean samples, while KDIGA-ARDA forces the student to align both predictions and input gradients
with the teacher on perturbed samples. We also tried other variants but did not observe notable differences.

J. Limitations
The theoretical proof of the preservation of adversarial robustness relies on the local linearity assumption, which is not

necessarily true. And we empirically show that adversarially robust models tend to have better local linearity in Table 3,
indicating choosing robust teacher tends to meet such a strong assumption. And we think it is of interest to conduct more
analysis on the relationship between adversarial robustness and linearity properties in the future.
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