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Abstract

The vulnerability of convolutional neural networks
(CNNs) to image perturbations such as adversarial per-
turbations and common corruptions has recently been in-
vestigated from the perspective of frequency. In this study,
we investigate the effect of the amplitude and phase spec-
tra of adversarial images on the robustness of CNN classi-
fiers. Extensive experiments revealed that the images gen-
erated by combining the amplitude spectrum of adversar-
ial images and the phase spectrum of clean images accom-
modates moderate and general perturbations, and train-
ing with these images equips a CNN classifier with more
general robustness, performing well under both adversar-
ial perturbations and common corruptions. We also found
that two types of overfitting (catastrophic overfitting and ro-
bust overfitting) can be circumvented by the aforementioned
spectrum recombination. We believe that these results con-
tribute to the understanding and the training of truly robust
classifiers.

1. Introduction
Despite their state-of-the-art performance, convolutional

neural networks (CNNs) have been found to be vulnera-
ble to perturbations in images such as adversarial pertur-
bations [6] and common corruptions [3]. Although such
perturbations do not change the semantic information of the
images, they substantially degrade the performance of CNN
classifiers. Numerous data augmentation approaches had
been introduced to improve the robustness of CNNs against
different types of perturbations. For instance, adversarial
training was proposed to improve the robustness against ad-
versarial perturbations and APR [1] was proposed to im-
prove the robustness against common corruptions. How-
ever, most of the methods only address a certain type of
perturbations without considering the robustness in a broad
sense.

The vulnerability of CNNs to image perturbations are of-
ten linked to the disparity of behaviors in the frequency do-
main between humans and CNNs in image recognition task.
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Figure 1. The pipeline of the proposed frequency-based data aug-
mentation. The maps F and F−1 denote the discrete Fourier trans-
form and its inverse. The amplitude spectra of a clean image and
its adversarial image are swapped to generate adversarial ampli-
tude and adversarial phase images.

For instance, Wang et al. [8] suggested that CNNs exploit
high-frequency image components that are not perceptible
to humans. Chen et al. [1] suggested that one can train a
CNN classifier to be more robust against common corrup-
tions by encouraging the model to focus more on the phase
spectrum.

In this study, we investigate the nature of the amplitude
and phase spectra of adversarial images. Inspired by [1],
we propose a frequency-based data augmentation method in
which the amplitude spectra are swapped between clean and
adversarial images to generate adversarial amplitude and
adversarial phase images (Figure 1). In particular, training
with the former images provide more general robustness be-
cause it encourages a CNN classifier to focus on the phase
spectra, leading to CNNs that are robust against common
corruptions. In addition to that, adversarial amplitude im-
ages also contain the amplitude spectra of the adversarial
images, which enable CNNs to be robust against adversar-
ial perturbations. Through extensive experiments, we re-
vealed that the training with the adversarial amplitude im-
ages achieved the followings:

• It led to CNN classifiers that are robust to both adver-



sarial perturbations and common corruptions, whereas
the baseline methods only enhance either of them.

• It prevented the catastrophic overfitting [9] and the
robust overfitting [4] during the adversarial training,
whereas each of the other convention data augmenta-
tion methods, the random crop, and horizontal flip, did
not.

• It also helped the CNN classifiers learn from moder-
ate, strong, and even extremely strong adversarial im-
ages, whereas both the standard training with adversar-
ial images and that with adversarial phase images suf-
fer from catastrophic overfitting, leading to poor per-
formance on adversarial perturbations other than those
specifically trained against.

The experimental results show that (i) the amplitude spec-
trum of adversarial images accommodates moderate and
general perturbations that helped classifiers to equip more
general robustness, and (ii) the phase spectrum of adversar-
ial images tended to be moderate but still adversarial, which
may improve the adversarial robustness of classifiers but
also retain the risk of catastrophic overfitting. We believe
that this study deepens the understanding of general per-
turbations in images, particularly from the frequency per-
spective, and contributes to the future development of truly
robust image classifiers.

2. Adversarial Amplitude Swap
To train a CNN classifier to be robust against both com-

mon corruptions and adversarial perturbations, we consider
that both the amplitude and phase spectra of images play
important roles. We propose a new frequency-based data
augmentation method to swap the amplitude spectrum of
the former with that of the latter to generate two aug-
mented images: an adversarial amplitude image, which
has the amplitude spectrum of the adversarial image and
the phase spectrum of the clean image, and an adversar-
ial phase image, which is the opposite (Figure 1). For-
mally, the process of the adversarial amplitude swap is per-
formed as follows. First, given a clean image x, an adver-
sarial image xadv is generated. Then, the discrete Fourier
transform (DFT) is applied to the two images to obtain
the amplitude–phase decompositions, (A(x),P(x)) and
(A(xadv),P(xadv)). The adversarial amplitude and adver-
sarial phase images, xAA and xAP, are then constructed by
the inverse DFT of (A(x),P(xadv)) and (A(xadv),P(x)),
respectively; namely,

xAA = F−1
(
A(xadv) · ei·P(x)

)
, (1)

xAP = F−1
(
A(x) · ei·P(xadv)

)
. (2)

Algorithm 1: Adversarial amplitude swap
Input: x: clean image
Output: xAA: adversarial amplitude image, xAP:

adversarial phase image
1 xadv ← ADVERSARIALATTACK(x). // E.g., by

FGSM.

2 A(x),P(x)← DFT(x)
A(xadv),P(xadv)← DFT(xadv)

3 xAA ← INVDFT(A(xadv),P(x))
xAP ← INVDFT(A(x),P(xadv))

Table 1. The classification accuracy (%) of WideResNet40-2 clas-
sifiers trained on CIFAR-10 with different combination of images.
The FGSM attack with ϵ = 8/255 was used in training. The top-2
results are indicated in bold while the best results are underlined.

Combination of Training Data
Clean APR C&Adv C&AA C&AP

Clean 94.1 94.3 86.1 91.3 88.3
FGSM (ϵ0 = 8) 66.8 64.5 63.7 72.4 65.7

FGSM (ϵ0 = 32) 43.5 51.0 53.5 60.3 54.3
PGD-l∞ 0.2 0.3 45.7 28.7 38.4
PGD-l2 2.4 7.0 53.8 51.7 54.2

Corrupted-1 90.4 92.2 86.2 89.4 87.9
Corrupted-2 88.1 90.9 85.0 88.2 86.7
Corrupted-3 85.9 89.7 83.8 86.9 85.4
Corrupted-4 83.2 87.7 82.2 85.3 83.8
Corrupted-5 79.3 85.1 79.5 82.4 81.2

Pseudo-code for this process is provided in Algorithm 1.
Note that the adversarial image changes at each train-

ing step because its generation depends on the classifier.
Thus, xAA has a static phase spectrum derived from x, and a
stochastic amplitude spectrum derived from different xadv,
along the training. Therefore, training with xAA encourages
CNN classifiers to learn the static semantic features from
the phase spectrum and also resist the stochastic adversar-
ial features in the amplitude spectrum. Similarly, xAP has a
static amplitude spectrum of a clean image and the stochas-
tic phase spectrum of the adversarial image, which encour-
ages the classifiers to learn more on the amplitude spectrum
and resist the adversarial features in the phase spectrum.

3. Experiments

We conducted multiple experiments on CIFAR-10
and CIFAR-100 datasets. To measure the robust-
ness of models against adversarial perturbations, we
use FGSM with ϵ = ϵ0/255 for ϵ0 ∈ {8, 32}
and PGD-l∞ with ϵ = 8/255, the step size α =
0.1, and the number of iterations iiters = 20, and PGD-l2
with ϵ = 0.5, α = 0.1, iiters = 20. For the robustness



Table 2. The classification accuracy (%) of WideResNet40-2 clas-
sifiers trained on CIFAR-100 with different combination of im-
ages. The FGSM attack with ϵ = 8/255 was used in training. The
top-2 results are indicated in bold while the best results are under-
lined.

Combination of Training Data
Clean APR C&Adv C&AA C&AP

Clean 72.5 72.0 63.7 66.3 61.3
FGSM (ϵ0 = 8) 27.5 31.7 70.1 38.8 31.1

FGSM (ϵ0 = 32) 12.7 20.4 41.9 27.3 21.1
PGD-l∞ 0.0 0.0 1.3 8.9 13.3
PGD-l2 0.1 1.0 0.5 19.5 24.3

Corrupted-1 70.3 73.5 67.2 68.9 66.2
Corrupted-2 66.8 71.7 65.4 67.0 64.6
Corrupted-3 63.9 69.8 63.5 65.4 62.9
Corrupted-4 60.3 67.2 61.1 63.3 61.1
Corrupted-5 55.2 63.4 57.5 59.7 57.9

Table 3. The classification accuracy (%) of WideResNet-40-2 clas-
sifiers trained on CIFAR-10 with different combination of images.
The PGD-l∞ attack with ϵ = 8/255, α = 2/255, iiters = 10 was
used in training. The top-2 results are indicated in bold, and the
best results are underlined.

Combination of Training Data
Clean APR C&Adv C&AA C&AP

Clean 94.1 94.3 83.8 88.5 86.2
FGSM (ϵ0 = 8) 66.8 64.5 55.2 66.2 62.8

FGSM (ϵ0 = 32) 43.5 41.0 38.3 56.7 51.9
PGD-l∞ 0.2 0.3 46.2 42.6 39.6
PGD-l2 2.4 7.0 52.1 52.7 51.6

Corrupted-1 90.4 92.2 84.5 88.0 86.4
Corrupted-2 88.1 90.9 83.3 86.9 85.3
Corrupted-3 85.9 89.7 82.2 85.7 84.1
Corrupted-4 83.2 87.7 80.7 84.1 82.5
Corrupted-5 79.3 85.1 77.7 81.3 79.7

against common corruptions, we evaluated methods on the
CIFAR-10-C and CIFAR-100-C datasets, which contains
testset with 15 different types of noises, each appearing
at five severity levels or intensities. Level-1 represents the
lowest severity and level-5 represents the highest severity.

We trained classifiers with WideResNet-40-2 ][10]. We
adopted two data-augmentation-based methods as the base-
lines, the APR method introduced in [1] and the standard
training with clean and adversarial images (C&Adv), which
corresponds to GoodFellow’s adversarial training with the
weight of w = 0.5 [2].

3.1. CIFAR-10 & CIFAR-100 Image Classification

Table 1 shows the results of models trained on the
CIFAR-10 dataset. The fast gradient sign method (FGSM)
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Figure 2. WideResNet-40-2 classifiers trained with conventional
and proposed data augmentation methods. (a) Training with
FGSM perturbations. (b) Training with PGD perturbations.

attack with budget ϵ = 8/255 was used in training. Notably,
the model trained with clean and adversarial amplitude im-
ages (C&AA) achieved an overall improvement in the ro-
bustness tests compared to the model trained with clean im-
ages (Clean). The APR model specialized for common cor-
ruptions achieved the highest robustness against common
corruptions across all severity levels but were still vulner-
able to adversarial perturbations, particularly to those by
the projected gradient descent (PGD) [5]. In contrast, the
C&Adv, which is specialized for adversarial perturbations
were robust against PGD perturbations but not common
corruptions. Training with clean and adversarial phase im-
ages (C&AP), which contain the adversarial phase spectra
showed the same trend as that of C&Adv.

We also evaluated the methods on the CIFAR-100
dataset using the same experimental setup (Table 2). Sim-
ilar trends were observed, in which the C&AA model
achieved improvements in the robustness against both ad-
versarial perturbations and common corruptions, while both
the baseline models, APR and C&Adv only improved the
robustness against either of the perturbations. To further
evaluate the proposed method, we used the PGD-l∞ with
ϵ = 8/255, step size α = 0.1, number of iterations
iiters = 10 in training. The results are shown in Table 3. We
observed the same trend where C&AA achieved improve-
ment in general robustness while the baseline models did
not.

3.2. Catastrophic and Robust Overfitting

It is known that data augmentation is effective in pre-
venting robust overfitting during adversarial training [7].
We compared the proposed method with two conventional
data augmentation methods, random crop and random hor-
izontal flip. Figure 2 shows the model robustness against
PGD perturbations when WideResNet-40-2 classifiers are
trained using different data augmentation methods on the
FGSM and the PGD perturbed images. Notably, both the
models trained with either of the conventional data augmen-
tation methods suffered from both catastrophic and robust
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Figure 3. Examples of images generated by PGD-l∞ with ϵ =
0.5, α = 0.1, iiters = 10. (a) clean image, (b) adversarial image,
(c) adversarial amplitude image, and (d) adversarial phase image.

Table 4. The classification accuracy (%) of WideResNet-40-2 on
CIFAR-10. PGD-l∞ with ϵ = 0.5, α = 0.1, iiters = 10 was used
in training. The best results are indicated in bold.

Combination of Training Data
Clean&Adv Clean&AA Clean&AP

Clean 90.0 93.7 89.9
FGSM (ϵ0 = 8) 33.6 71.1 61.3

PGD-l2 0.1 15.5 0.9
Corrupted 71.0 86.2 78.1

overfitting. However, when FGSM perturbations were used
in training, the model trained with adversarial amplitude
images (AA) did not suffer from catastrophic overfitting,
leading to improvements in accuracy at the 100th and 150th
epochs, and eventually outperformed both the conventional
data augmentation methods. When PGD perturbions were
used in training, the model trained with clean and adver-
sarial amplitude images (Clean & AA) did not suffer from
robust overfitting. Although it started at a relatively low ac-
curacy during the first 100 epochs, the model could pick up
the adversarial features from the amplitude spectrum after
the tuning of learning rates at the 100th and 150th epochs.

3.3. Extreme Cases

We trained WideResNet-40-2 on CIFAR-10 with an ex-
tremely strong adversarial attack. PGD-l∞ with ϵ =
0.5, α = 0.1, iiters = 10, which allows the adversary to
change at most 50% of the target image, was used in train-
ing. These adversarial images can barely be recognized by
humans. By swapping the amplitude spectra, the adversar-
ial amplitude and adversarial phase images became recog-
nizable (Figure 3). Table 4 shows the results. When ad-
versarial images were used, the model struggled to learn
adversarial features, and hence it failed to be robust against
adversarial perturbations. In contrast, adversarial amplitude
images, which contain only the adversarial amplitude spec-
trum, trained the model to be robust against both adversarial
perturbations and common corruptions.

3.4. Adversarial Features of Images

We demonstrated the efficacy of the proposed method
in training a robust CNN against both adversarial perturba-
tions and common corruptions. Despite the ability to im-

Table 5. Classification error of classifiers trained with clean im-
ages on several types of adversarially perturbed images.

Networks Error Rates (%)
Clean Adv AA AP

FGSM ResNet-18 5.2 34.4 22.6 27.0
WideResNet 6.0 33.2 21.5 26.3

PGD-l∞
ResNet-18 5.2 99.9 37.8 76.4

WideResNet 6.0 99.8 36.0 76.5

prove adversarial robustness, adversarial amplitude images
did not serve as a strong attack compared to original ad-
versarial images, as shown in Table 5. Nevertheless, the
CNN classifiers trained with adversarial amplitude images
showed comparable or, in some cases, even better adversar-
ial robustness compared to the standard adversarial training.

4. Conclusion
In this study, we have investigated the nature of the am-

plitude and phase spectra of adversarial images. We have
proposed a frequency-based data augmentation method, in
which the amplitude spectra are swapped between clean and
adversarial images. We have demonstrated that training
with adversarial amplitude images led to CNN classifiers
that are robust against both adversarial perturbations and
common corruptions. The experimental results have shown
that the amplitude spectrum of adversarial images accom-
modates moderate and general perturbations that can help
CNN classifiers to equip more general robustness. Despite
having a weaker fooling ability, adversarial amplitude im-
ages served as better training images that helped CNN clas-
sifiers achieve more general robustness. We further demon-
strated that with the proposed data augmentation method,
CNNs can even learn from some extreme adversarial ex-
amples that humans can barely recognize. We believe that
these findings will be crucial for the future development of
truly robust CNN classifiers.
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