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Abstract

Current adversarial attacks for motion estimation (opti-
cal flow) optimize small per-pixel perturbations, which are
unlikely to appear in the real world. In contrast, we ex-
ploit a real-world weather phenomenon for a novel attack
with adversarially optimized snow. At the core of our at-
tack is a differentiable renderer that consistently integrates
photorealistic snowflakes with realistic motion into the 3D
scene. Through optimization we obtain adversarial snow
that significantly impacts the optical flow while being indis-
tinguishable from ordinary snow. Surprisingly, the impact
of our novel attack is largest on methods that previously
showed a high robustness to small L,, perturbations.

1. Introduction

Adversarial attacks, which are a severe threat to neural
networks, have recently been introduced in the context of
optical flow. There, the goal is to compute the pixel-wise
2D motion f between two consecutive frames of an image
sequence at times ¢ and ¢41. Current attacks [1 |, 4] modify
these two frames in the 2D space and consequently ignore
the actual 3D geometry of the scene and the objects moving
within. Moreover, when modifying pixels, they do not im-
pose visual constraints, yielding attacked images that lack
naturalism. Therefore, the conclusions drawn from robust-
ness analyses with these attacks might not necessarily re-
flect the robustness of optical flow methods in the real world
— where perturbations are more likely to appear in the form
of weather phenomena.

This work aims to answer the question whether a natu-
rally occurring weather effect like snow can be manipulated
to serve as an adversarial sample for motion estimation. To
this end, we propose an adversarial attack that augments
images with falling snowflakes featuring a high degree of
realism: We create snowflakes with a view-consistent 3D
motion over time, insert them into the 3D scene in a depth-
aware manner, and ensure photo-realism through visual ef-
fects (see Fig. 1). This enables us to generate adversari-
ally manipulated snow that significantly deteriorates optical
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Figure 1. Snow attack with 3000 snowflakes that are first placed
randomly in the 3D scene (Random snow) and then optimized (Ad-
versarial snow) to perturb optical flow estimation with GMA [6].

flow predictions, while still satisfying the spatio-temporal
and visual constraints of naturalistic snow. We consider
snow as representative weather effect where single particles
move independent of the remaining scene content, but note
that the proposed attack procedure could also be used to
model rain or sleet.

Related work. Current optical flow methods based on neu-
ral networks [5, 6, 10] were recently shown to be suscep-
tible to adversarially modified input images, which alter
the resulting attacked flow f to resemble a specified tar-
get flow f7. The few existing adversarial attacks on optical
flow methods generate either perturbations with small L,
norms [ 14, 15] or adversarial patches [ 1 1], while adversarial
weather attacks are completely unexplored. In contrast, ad-
versarial perturbations that imitate snow effects have been
investigated in the context of classification [7, 8] or hu-
man pose estimation [16]. However, for these applications,
weather attacks [7, 8] or snow augmentations [4, 9] only
have to be applied to single images rather than sequences.
For optical flow estimation, a realistic motion of the weather
effect over multiple frames and camera perspectives is
required, imposing certain geometric constraints in time,
which prevents the direct application of existing single-
image adversarial weather generation schemes. Also, learn-
ing models for variations in images from data rather than
modeling them explicitly has been explored for adversar-



Figure 2. Model for snowflake motion in the 3D space.

ial training of robust classification methods [3, 13, 17] or
to synthesize snowy versions of satellite images [12]. To
ensure a realistic 3D motion of the weather effect in time,
our attack explicitly models the motion of snow particles.
This enables the computation of a ground-truth optical flow
field for scenes with generated snow as the motion of each
snowflake is known, which would not directly be possible
with learned weather models. In terms of visual quality, the
results of previous snow attacks were so far moderately con-
vincing [7, 8] compared to conventional, non-differentiable
rendering of snow effects [1].

Contributions. (i) In our paper, we present a differentiable
snow-to-scene rendering framework that generates visually
appealing snow, which moves realistically over multiple
times steps. (ii) Based on this rendering framework, we de-
vise the first adversarial snow attack for optical flow. It opti-
mizes 3D spatial positions of snowflakes in the scene rather
than 2D per-pixel perturbations, resulting in attacked im-
ages that retain high realism in snow movement and appear-
ance. (iii) And finally, our snow attack not only leads to a
significant degradation of optical flow results, but also illus-
trates that methods with little sensitivity to small L,, pertur-
bations are particularly affected when the snow-parameters
are optimized.

2. Adversarial snow

To study the robustness of optical flow algorithms to-
wards weather effects, we design an adversarial attack that
augments image sequences with snowfall. To this end, we
first equip an image sequence with parametrized snowflakes
of realistic appearance and motion. Second, we optimize
the snowflake parameters such that the resulting snowy im-
age sequence causes a specified (wrong) flow prediction.

This approach imposes three constraints on the creation
of the snowflakes: (i) Because motion estimation is de-
signed to cope with moving objects in a 3D scene, a sim-
ple 2D animation of the snowflakes in the image plane is
not sufficient. Instead, we have to model a realistic 3D mo-
tion, which also respects camera motion and object depth.
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Figure 3. Breakdown of our realistic snow rendering process.

(ii) Moreover, expanding our pursuit of realism also to the
appearance of the snow, the snowflakes should be integrated
with appropriate visual effects. Such effects include an
occlusion-aware depth placement as well as an out-of-focus
blur. (iii) Finally, to enable the adversarial optimization
of the snowflake, the whole rendering of the parametrized
snowflakes needs to be differentiable.

2.1. Snow generation and rendering

To create 2D images of spatio-temporally consistent and
visually appealing snowflakes we proceed in two steps.
First, we initialize a fixed set of snowflakes in the 3D scene
and equip them with properties: Initial 3D positions, 3D
motion, 3D offsets before and after the motion (¢, d41),
shapes, scaling and transparencies 6 (see Fig. 2 for the mo-
tion model). Second, we make use of the 3D scene informa-
tion to differentiably render the snowflakes in both frames,
assuming that depth and camera information is given.

Snowflake initialization. To initialize the snowflake posi-
tions, we uniformly sample a fixed number of points in the
3D scene that are visible in the first frame or — after adding
the 3D motion — in the second frame. Every snowflake is as-
sociated with a 2D flake image, which is randomly sampled
from a set of snowflake templates and rotated by a random
angle (Fig. 3, row 1). Then, we scale the flake image ac-
cording to the snowflake’s inverse depth, and initialize the
transparency with a depth-dependent value (rows 2, 3). Fi-
nally, we add realistic out-of-focus blur by convolving the



flake image with a point spread function (row 4).

Snowflake rendering. We render the snowflakes with their
associated 3D positions and transparencies in the given in-
put frames as follows: First, we compute the correspond-
ing 2D points in both frames, which yields center positions
for the 2D flake images. Using the camera projection ma-
trix and the relative transformation matrix A, we project the
3D points and their motion-displaced positions into the first
and second frame, respectively. Next, we determine the vis-
ibility for each pixel of the flake-image by interpolating a
visibility map computed from frame depth and the flake
depth d per camera, which allows a realistic, occlusion-
aware scene integration (Fig. 3, last row). Lastly, we add
the 2D flake images at the correct subpixel locations to the
frames through bilinear interpolation, which enables a dif-
ferentiation w.r.t. the snowflake parameters.

2.2. Adversarial optimization

After the snowflakes S are initialized and rendered, we
modify certain snowflake parameters to change the output
f of optical flow networks towards a desired target flow
fT. We optimize transparency @ and offsets &;, &1 be-
fore and after the motion. Other parameters like initial 3D
positions, 3D motion and 2D flake image are fixed. To en-
sure a valid range of transparency values, we transform the
bounded variable to a continuous one before optimization.
Our loss function measures flow differences with the av-
erage endpoint error (AEE) [14] and allows larger offsets
¢, 041 for distant snowflakes via an a-balanced MSE-like
term, weighted with the inverse of the snowflake depth d:
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3. Experiments

We implement the snow attack in PyTorch and generate
snowy versions for all sequences of the Sintel dataset [2], as
it is the de-facto standard for optical flow benchmarking and
provides depth and camera information. Attacked are the
optical flow methods GMA [6], FlowNet2 [5], SpyNet [10]
with Sintel checkpoints, which were identified in [14] to
represent approaches with either high quality / low ro-
bustness, medium quality and robustness or low quality /
high robustness, respectively. We choose a zero-flow target
fT (white flow visualization) [14], offset penalty weights
oy = a1 = 1000 and snow falling down:right (ratio 5:2).
In several experiments, we investigate the attack strength
AEE(f, fT) (small value when attacked flow and target co-
incide), when (i) the number of snowflakes increases, (ii)
different snow parameters are optimized, and (iii) optimized
snow for one method is transferred to another.

Snow density. First, we optimize ¢;, d;1; and 6, and study
the attack strength when the total number of snowflakes in

Method 1000 2000 3000 4000 5000

SpyNet 7.04 544 454 414 3.62
FlowNet2 633 433 3.19 238 2.28
GMA 856 638 442 338 229

Table 1. Attack strength AEE(f, fT) of adversarial snow with an
increasing number of snowflakes per frame-pair (1000-5000) on
different optical flow methods, best attack strength is bold.

Parameters  SpyNet FlowNet2 GMA
Initial snow 13.29 2193 12.25
0t 5.26 4.51 5.76
Ot 6.53 472  6.88
0 12.74 19.72  11.98
Ot Oupa 4.68 3.73 441
0t, 0 5.15 4.11 5.95
Opy1, 0 6.21 484  6.89
Ot, Opa, 0 4.54 319 442

Table 2. Attack strength AEE(f, f7) of adversarial snow, opti-
mized for combinations of snow parameters :, 611 and 0. Initial
snow measures the attack strength of randomly initialized snow.

both sequences is varied from 1000 to 5000. In Table I,
the attack strength (distance from attacked flow to target) of
adversarial snow increases with the snowflake number, in-
dependent of the attacked method. On average, the distance
is more than halved from 1000 to 5000 snowflakes. This
demonstrates the realistic behavior of our adversarial snow,
which increases its influence with the covered image area.
We use 3000 snowflakes for further experiments because
they balance attack strength and visual snow density.

Optimizing snow attack strength. Next, we investigate
how optimizing different snow parameters influences the
attack strength. Tab. 2 summarizes the attack strength for
snow attacks with 3000 snowflakes, optimized for all pa-
rameter combinations, and compared to a random snow ini-
tialization. In all combinations, optimizing the position off-
set in the first frame §; yields the strongest attacks, while
varying the snowflake transparency 6 has the smallest im-
pact. Nonetheless, all parameters &, d¢1, 6 must be opti-
mized to reach the strongest attack - only for GMA it suf-
fices to optimize d; and 64 alone. Fig. 4 visualizes the at-
tacked frames and predicted flows for all methods when op-
timizing d;, 0.1 and 6. There, we make several interesting
observations: When comparing randomly initialized and
adversarially optimized snowflakes, their positions differ
only slightly and the adversarial sample is indistinguishable



Figure 4. Qualitative results for 3000 snowflakes on images from the Sintel final dataset with random initialization and adversarial
optimization with optical flow predictions for GMA [6], FlowNet2 [5] and SpyNet [ 10] (left to right).

from random snow to a human observer. Also, it is surpris-
ing that snowflakes eradicate the estimated motion despite
their inability to stand still due to falling and camera mo-
tion. Moreover, when comparing the initial snow to the op-
timized results, FlowNet2 and SpyNet that were previously
identified to be relatively robust [14], alter their predictions
significantly in the presence of adversarial snow. We as-
cribe this phenomenon to the more detailed flow estima-
tions of GMA, which detects the localized motion of single
snowflakes (cf. Fig. 4, col. 3, where circular snowflakes are
visible). The less accurate methods FlowNet2 and SpyNet
instead propagate the detected motion from snowflakes over
larger areas, rather than attributing it to small moving ob-
jects (c¢f. Fig. 4, col. 6,9, where optical flow predictions
have few details).

Snow transferability. Finally, we investigate if snowflakes
optimized for one method can change the flow predictions
of another. We use the adversarial snow attack with 3000
snowflakes and optimize the snow for d;, d;y1 and 6, be-
fore evaluating all networks on the resulting adversarial im-
ages. Tab 3 summarizes the results. While snowflakes are
most effective on the method they were optimized for, trans-
ferred snow has a measurable negative impact on FlowNet2
and GMA compared to random snow (cf. Tab. 2, Init). For
even more transferable configurations, snowflakes could be
optimized over several images and methods.

4. Conclusion

In this paper we proposed a novel adversarial attack on
motion estimation algorithms with realistic snow. To this

FlowNet2 GMA

TeNain ‘ SpyNet

SpyNet 4.54 13.80  13.44
FlowNet2 16.54 319 1421
GMA 10.33 10.67 4.42

Table 3. Transferability of adversarial snow strength AEE( 1, i)
of snowflake positions that were optimized for one optical flow
method to another, best attack in bold.

end, we developed a differentiable snowflake renderer that
can be used to generate adversarial samples with a strong
impact on optical flow methods. Interestingly, our attack
demonstrates the ability to let networks predict zero-flow
although the snowflakes undergo both individual and cam-
era motion. At the same time, the resulting attacked images
are visually indistinguishable from random snow images,
making our attack unnoticeable for a human observer. Fi-
nally, more accurate methods appear to be more robust to-
wards adversarially optimized snow than towards small L,,
perturbations, as they detect the motion of single snowflakes
rather than propagating the motion into the wider image.
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