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Abstract
The current state-of-the-art adversarially robust mod-

els have more object-aligned attributions, and attribution-
ally robust models have stabler attributions than adver-
sarially trained models. However, these robust models’
attributions suffer from another stability-alignment trade-
off problem, i.e., these models’ attributions are either sta-
ble against explanation-based attacks like IFIA at the cost
of relevance or have well object-aligned attributions but
unstable against the explanation-based attacks. We pro-
pose a training strategy that enforces attribution alignment
through teacher saliency within the robust attribution train-
ing framework to curb this tradeoff. Moreover, we also note
that the current evaluation metrics for measuring the stabil-
ity of the attribution maps do not consider the object align-
ment of the generated attribution map and propose new met-
rics that capture both facets of the attribution maps, i.e.,
stability and alignment.

1. Introduction
Deep Neural Networks (DNNs) have emerged as the

de facto technique for vision and have myriad applica-
tions in various domains, including autonomous naviga-
tion, surveillance, medical diagnosis, etc. However, there
has been a significant impedance in deploying these mod-
els in mission-critical applications due to their vulnerabil-
ity to adversarial – and more recently, attributional – at-
tacks like PGD [18], AutoAttack [9], C&W [3], IFIA [12],
etc. Moreover, it has been shown that explanations gen-
erated by these networks are fragile and can be disturbed
easily by explanation-based attacks like IFIA [12]. From a
viewpoint of adversarial robustness, Adversarial Training
(AT) [18] is the most widely used method, and most im-
provements on AT have since been developed by adding
regularizers without changing the basic min-max formu-
lation [2, 15, 18, 20, 27, 29, 31, 35]. Prior research works
have also demonstrated that attribution (or saliency) maps
generated by adversarially trained networks are more inter-
pretable and object-aligned [11]. From another perspective
of robustness, researchers have recently shown that both
natural and adversarially trained models generate different
attribution maps for two similar-looking input images with
minor perturbations [12] (while maintaining the predicted
class). To handle this issue, training strategies such as RAR
[7] and ERAR [21] have been proposed, which try to make
DNNs capable of producing similar attribution maps for vi-

sually indistinguishable images with perturbations. A DNN
trained with such methods has been termed to be attribu-
tionally robust. Our studies in this work reveal that these
strategies (adversarial and attributional robustness) bear a
tradeoff. On one hand, an adversarially trained model suf-
fers from instability to explanation attacks and produces
dissimilar attributions. The inability to provide a stable at-
tribution map against l∞- norm based explanation attack is
conspicuous in Fig 1 (right half ). On the other hand, al-
though an attributionally robust model provides stable attri-
butions, they are often not object-aligned, as illustrated in
Fig 1 (left half ). We also confirmed this inference using
a user study with ten subjects, all of whom unanimously
agreed that the attribution maps obtained using the RAR
model, such as on Fig 1 (left), were not object-aligned. A
primary reason that the above issues have not been high-
lighted in previous efforts is the metrics used to evaluate
attributional robustness, viz., Top-K intersection, Spearman
and Kendall’s correlation between attribution maps before
and after the attack. These metrics measure the stability
of attribution maps before and after explanation-based at-
tacks but do not consider the object-alignment of the gener-
ated attributions. Besides, the regularizers used for attribu-
tional training implicitly force the model towards generat-
ing sparser attributions since they try to constrain the norms
between gradients (integrated gradient, IG [25], in partic-
ular) of natural and attacked images. Such a loss function
can move the model towards degenerate solutions and affect
its attribution. While one can argue that sparsity removes
spurious correlations and hence can be desirable, sparsity
should not come at the expense of object-alignment, which
is the focus of this work. Such sparsity should ideally be
enabled through pruning of background pixels to eliminate
spurious correlations and not in the object’s pixels. More-
over, it has been shown that as a model’s attributions be-
come more aligned with the object, its robustness to adver-
sarial examples is also improved [11]. In this work, we
aim to address the issue of the stability-alignment trade-
off between adversarial robustness and attributional robust-
ness. In particular, we leverage saliency matching with off-
the-shelf pre-trained teacher networks that generate well-
aligned and interpretable attributions to guide the training
of a given network. We also propose newer metrics for eval-
uating the robustness of attribution maps against an attribu-
tional attack that consider the stability and object-alignment
of the attribution maps.



Figure 1. Original image (top row) and IFIA [12] attacked image with same predicted class (bottom row) and their corresponding saliency maps obtained
using RAR model [7] (left half ) and AT model [18] (right half ). Note that the RAR model generates similar saliency maps before and after an attack, which
are not object-aligned. In contrast, the AT model generates object-aligned saliency maps but is vulnerable to an attribution attack, IFIA [12].

2. Proposed Methodology
Training : We aim to enhance the attribution map of a
robust model without disturbing the model’s actual objec-
tives. In other words, for an adversarially robust network,
the training strategy should not damage its robustness to ad-
versarial attacks and, at the same time, must improve the
robustness to explanation-based attacks. Similarly, for at-
tributionally robust networks, the training strategy should
not hamper its robustness to the IFIA attack and, at the
same time, must enhance the object-alignment of attribu-
tion maps. A meaningful way to achieve this is to employ
a saliency matching regularizer to ensure object alignment
along with a robust attribution regularizer to ensure stability.
It is possible to optimize saliency matching regularizer and
robust attribution regularizer jointly within a single training
objective due to their compatible nature. Our experiments
have also revealed that a robust attribution regularizer helps
attain stability or robustness to explanation attacks for an
adversarially trained model, whereas the saliency matching
regularizer enables the model to retain its capability to gen-
erate interpretable attribution maps. On the other hand, for
an attributionally robust model, the robust attribution regu-
larizer or IG-regularizer helps retain its robustness to expla-
nation attacks, and the saliency matching regularizer allows
the model to generate more interpretable attributions with-
out giving up the attributional robustness. However, such
a joint training strategy requires a teacher network with in-
terpretable attributions. Prior research has shown that an
adversarially trained network is an ideal candidate for such
a teacher. We explain this below.
Robustness and Alignment : For an n-class classifier
F (x) = argmax

i
Ψi(x) where Ψ = (Ψ1, ...,Ψn) : X −→

Rn be differentiable in x. Then we call ∇ΨF (x) the saliency
map of F and the alignment with respect to Ψ in x is repre-
sented by:

α(x) :=
|⟨x,∇ΨF (x)(x)⟩|
∥∇ΨF (x)(x)∥

(1)

Connection of robustness with alignment was studied
in [11] (cf.Thm 2). This states that a network’s linearized
robustness (ρ̂) around an input x is upper-bounded by the
binarized alignment term α+ as:

ρ̂(x) ≤ α+(x) +
C

∥g∥
(2)

where C is a constant, and linearized robustness ρ̂(x) is
given by:

ρ̂(x) := min
j ̸=i∗

Ψi∗(x)−Ψj(x)

∥∇Ψi∗(x)−∇Ψj(x)∥
(3)

Also, g is the Jacobian of the top two logits i.e., g =
∇(Ψi∗(x) − Ψj∗(x)) and binarized alignment i.e., α+ is
given by

α+(x) =
|⟨x,∇(Ψi∗ −Ψj∗)(x)⟩|
∥∇(Ψi∗ −Ψj∗)(x)∥

(4)

Here j∗ is the minima of Eqn. 3. We also have α(x) =
α+(x) for linear model and binary classifier. Eqn. 2 ex-
plains the deviation of different terms for linearized robust-
ness in the case of a neural network. Also, a small error term
in Eqn. 2 implies that robust networks yield better align-
ment, i.e., more interpretable saliency maps. The results are
reported for the MNIST, F-MNIST, Flower, and GTSRB,
for which the ground-truth attributions are not available.
The “true” and “interpretable” attributions should highlight
the distinctive features of the object, i.e., the parts that hu-
mans use to distinguish that object from the others. The
reason for using an adversarially trained model as a ref-
erence is that as the adversarial robustness of a model in-
creases, attributions become more aligned to the object and
give out a more interpretable attribution that captures essen-
tial features [11]. Motivated by such findings and following
the similar arguments as in [5], [22], we have also used an
AT teacher. This explains why the saliency matching gives
good object alignment and why adversarially trained net-
works are candidate choices for teacher networks.
Training with this methodology has improved both adver-
sarial robustness, i.e., accuracy on adversarial examples,
and attributional robustness, i.e., in terms of metrics used
in literature like Top-K intersection, Kendall and Spearman
correlations, and their corresponding attribution aware met-
rics, which we discuss in the coming sections.

Teacher-guided Attribution Enhancement : Let us say
we have a pre-trained Teacher network (represented as fT ),
and we have a student network represented by a neural net-
work fS , parameterized by θ. Given an input image x, we
obtain the saliency map from a pre-trained Teacher Net-
work, which is denoted as JTCI

T (TCI represents True Class



Figure 2. Our proposed saliency enhancer

Index). Now, we maximize the true class prediction score
of the student network w.r.t input pixels and measure the
net change in input pixels, which is represented as JTCI

S .
Now for an image of dimension h× w with c channels and
d = h×w×c, JTCI

T can be considered as per-pixel gradient
and represented as:

JTCI
T (x) = ∇ΨfT (x) = [∇ΨfT (x1)...∇ΨfT (xd)] (5)

Similarly, JTCI
S is represented as:

JTCI
S (x) = ∇ΨfS(x) = [∇ΨfS(x1)...∇ΨfS(xd)] (6)

Our sole purpose is to influence the model to generate bet-
ter saliency that matches the teacher saliency. This is en-
forced by imposing similarity between the two saliency
maps JTCI

T and JTCI
S . We add a loss term at outer min-

imization to minimize the l2 distance between JTCI
T and

JTCI
S , which is represented as Ldiff and defined as below:

Ldiff = ∥JTCI
S − JTCI

T ∥22 (7)

Overall Optimization: It can be framed as a two-step pro-
cess: (i) Inner maximization (ii) Outer minimization. The
inner maximization is typically used to identify a suitable
perturbation that achieves the objective of an attribution at-
tack. On the other hand, the outer minimization seeks to
use the above regularizer to counter the attack and match
the saliency with the teacher. We describe each of them be-
low.
Inner Maximization: In order to obtain the perturbed im-
age x′ through attributional attack, we use the following ob-
jective function:

max
x′∈N(x,ϵ)

LCE(x′, y; θ) + S(∇Ã) (8)

where ∇Ã = IGLCE
x (x, x′)

Here, Ã denotes the computation of IG w.r.t the loss value,
and our objective is to maximize loss. We use LCE to de-
note the cross-entropy loss for the true class, and L1-norm
as S(·). Since the inner maximization is iterative by itself
(and solved before the outer minimization), we randomly
initialize each pixel of x′ within an l∞-norm ball of x and
then iteratively maximize the objective function in Eqn. 8.
Outer Minimization: Our overall objective function for the
outer minimization step is given by:

min
θ

[LCE(x′, y; θ) + S(∇Ã)︸ ︷︷ ︸
robust attribution reg.

+λ Ldiff︸︷︷︸
saliency matching reg.

]

(9)
where LCE is the standard cross-entropy loss used for the
multi-class classification setting. The term ∇Ã represents
difference in IG terms w.r.t the input image x and the per-
turbed image x′ i.e., IGLCE

i (x0, x) − IGLCE
i (x0, x′) con-

sidering the CE loss for IG computations. We use λ as a
weighting coefficient for Ldiff. We show the effects of con-
sidering different λ values on our proposed method in abla-
tion studies. Refer to Fig 2 for better understanding.
Attribution-Aware Attributional Robustness Metrics :
The metrics used in attributional robustness literature like
the Top-K intersection and Kendall and Spearman’s corre-
lations quantify the similarity between attribution maps be-
fore and after the attacks. However, they do not take into
account the goodness of the attribution maps. Such a regu-
larizer restricts the change in attribution maps with imper-
ceptible changes in the input image. In effect, a robust at-
tribution regularizer drives the derivative of the attribution
map towards zero. Moreover, it is a well-known fact that
the attribution methods signify the gradient of the target
class concerning the input image. It, in turn, implies that
robust attribution regularizer pushes the 2nd order deriva-
tive towards zero. In Fig 1, we show that attributionally
robust models suffer from object-alignment issues and gen-
erate very sparse and blackish attributions. This observa-
tion signifies that the network eventually settles in a de-
generate state where 1st and 2nd order derivatives are close
to zero. Hence we have ill-attributed but robust attribution
maps which may not be trustworthy enough to be deployed
in mission-critical applications like navigation, medical di-
agnosis, etc. Keeping in mind these shortcomings of prior
metrics, we design new metrics that consider both the qual-
ity and stability of attribution maps. We call these metrics as
Attribution-Aware (AA) metrics and are defined as follows:
Attribution Aware Attributional Robustness = (Goodness of
attribution map) × (Similarity of attribution maps for orig-
inal and attacked images).
We note that the essence of the current evaluation metrics
are maintained and the new metrics, namely AA-Top-K,
AA-Kendall and AA-Spearman are defined respectively as
the following:

[TopK(A) ∩ TopK(B)]︸ ︷︷ ︸
Goodness of attr. map

× [TopK(B) ∩ TopK(C)]︸ ︷︷ ︸
Similarity of attr. map

(10)

[Kendallρ(A,B)]︸ ︷︷ ︸
Goodness of attr. map

× [Kendallρ(B,C)]︸ ︷︷ ︸
Similarity of attr. map

(11)

[Spearmanρ(A,B)]︸ ︷︷ ︸
Goodness of attr. map

× [Spearmanρ(B,C)]︸ ︷︷ ︸
Similarity of attr. map

(12)

Here, Kendall corr. and Spearman corr. are denoted as
Kendallρ and Spearmanρ respectively. B and C repre-
sent attribution maps before and after the attack. A repre-
sents a “true” and “interpretable” attribution map. Inspired



Datasets Methods Clean Adv. Acc. Top-K Kendall AA-Top-K AA-Kendall
Nat 90.86 0.01 39.01 0.4610 5.41 0.1946

AT [18] 85.73 73.01 46.12 0.6251 46.12 0.6251
AT-start + Regularizer 86.21 76.52 72.33 0.6624 54.96 0.6354

F-MNIST RAR [7] 85.44 70.26 72.08 0.6747 51.48 0.5754
RAR-start + Regularizer 86.81 73.24 73.49 0.6920 55.39 0.6145

ERAR [21] 85.45 71.61 81.50 0.7216 59.21 0.6154
ERAR-start + Regularizer 87.01 74.16 82.31 0.7368 62.34 0.65

Nat 99.17 0.00 46.61 0.1758 4.12 0.0021
AT [18] 98.40 92.47 62.56 0.2422 62.56 0.2422

AT-start + Regularizer 98.20 93.5 71.84 0.3465 64.78 0.2652
MNIST RAR [7] 98.34 88.17 72.45 0.3111 58.42 0.2851

RAR+Regularizer 98.62 90.79 73.48 0.3317 61.12 0.2961
ERAR [21] 98.41 89.53 81.00 0.3494 66.45 0.2821

ERAR+Regularizer 98.72 92.66 82.89 0.3625 73.28 0.3019

Table 1. Comparative results of clean, adversarial, and attributional robustness achieved by models following our training method (as in eq. 8 and eq.
9) and another baseline attributional robustness training methods. Here, by “Regularizer” we mean robust attribution regularizer + saliency alignment
regularizer (as in eq. 9). Each gray row indicates a model is trained following our proposed joint training strategy. Among the colored rows, the difference
is the starting point of the model, i.e., e.g., “AT-start” indicates that we initialize the training starting from an adversarially trained model. The Cyan row
indicates the best result achieved on the corresponding dataset.

by the findings of [11] and the reasons briefly discussed
in section 2, we choose an attribution map of an adver-
sarially trained model as a potential candidate for A. We
note that any model capable of generating interpretable or
object-aligned attribution maps could also be a good choice
for A. We notice the attributional robustness of a model
trained using the baseline attributionally robust methods,
such as RAR [7] and ERAR [21] drops under these Attribu-
tion Aware evaluation schemes. Owing to space constraints,
we have moved results on Flower and GTSRB datasets and
ablation studies to the supplementary section. Table 1 also
show a similar trend. We also observe that a model’s attribu-
tional robustness when trained using our method improves
significantly under these schemes. Such findings indicate
the efficacy of a joint training strategy for providing a robust
model with stable and object-aligned explanation maps.



APPENDIX: Empowering a Robust Model
with Stable and Interpretable Explanations

3. Related Work

Attributional Robustness: Despite being an important
consideration for explainable AI, attributional robustness
has mostly been overlooked by researchers in the commu-
nity. Chen et al. [7] first proposed a training methodology
to improve the attributional robustness of a model following
the adversarial robustness framework proposed by Madry et
al. [18]. This consists of an iterative inner maximization and
an outer minimization step. At the inner maximization step,
an input image is perturbed iteratively, which changes the
model’s attribution map maximally. In contrast, at the outer
minimization step, the model is trained with the objective
of minimizing the change in the attribution map due to an
indistinguishable change in the image. Sarkar et al. [21]
further improved the attributional robustness of a model by
proposing a training strategy based on two regularizers. The
first one, i.e., class attribution based contrastive regularizer
forces the true class attribution to assume a skewed shape
distribution and the negative class attribution to behave uni-
formly. Another regularize, i.e., weighted attribution based
regularizer was introduced to weight the change in the at-
tribution of each pixel due to an indistinguishable change in
the image. Following a similar training framework, Singh
et al. [23], proposed a robust attribution training method,
which effectively tries to maximize the cosine similarity be-
tween the saliency map of true class and the actual input
image. At the same time, this training method minimizes
the cosine similarity between the negative class saliency
map and the actual image. This method fails specifically
for images where the ground truth class contains darker
object parts compared to the rest of the image or if there
exist bright pixels anywhere in the image outside the ob-
ject of interest. Wang et al. [28] proposed smooth surface
regularization to minimize the difference between saliency
maps for nearby points and showed that the model trained
with this regularizer helps improve attributional robustness
compared to the model trained by adversarial training [18].
However, there is another line of work that deals with the
sanity checks of explanation maps like [1], [4], [14], though
they do not use terms like attributional robustness, which
have similar goals.
Adversarial Robustness: Unlike attributional robustness,
adversarial robustness is a well-explored research area.
Starting from [12, 26], there are numerous efforts that
show the vulnerability of neural networks against care-
fully crafted human-imperceptible perturbations in an im-
age. Goodfellow et al. [13] introduced Fast Gradient Sign
Method (FGSM) attack method which was followed by
more effective iterative adversarial attacks such as proposed
by Kurakin et al. [16], C&W [3] attack, PGD [18], momen-

tum iterative attack [10], diverse input iterative attack [32].
On the other hand, a parallel line of work also became very
popular such as [2,8,15,18,22,27,31,34], which aim to find
training strategy to defend against stronger adversarial at-
tacks. Mis-classification Aware Adversarial Training [27],
Geometry Aware Adversarial Training [35], TRADES [34],
Feature Denoising Training [31], Adversarial Logit Pair-
ing [15], Parseval’s Network [8], Curriculum Adversarial
Training [2], etc. Also, there exist saliency-based methods
to improve adversarial robustness, such as Jacobian Adver-
sarially Regularized Network (JARN) [6] which improves
model robustness by matching the input gradient w.r.t. loss
to the actual image. Chen et al. [5] proposed a method that
leverages a discriminator to compare the jacobian of the im-
age and the image saliency. This work [7] is very similar to
JARN [6] as JARN compares the image to the transformed
version of the Jacobian through an adaptive network. Our
work is based on improving existing attributional robustness
training methods by attribution alignment through a teacher
network that is shown to improve the adversarial robustness
of the model.

4. Preliminaries

With the purpose of enforcing the restriction on the
saliency maps, produced under attributional robustness
training, to match to a good saliency, we propose to include
alignment of saliency maps in the training method. With
an adversarially trained teacher, the alignment is analogous
to the amalgamation of adversarial features to the model,
leading to improvement of performance against adversarial
attacks. Hence, our proposed training method requires eval-
uation against two types of attacks, i.e., adversarial as well
as attributional attacks. We introduce each of them below.
Adversarial Attack: The goal of an adversarial attack is
to find out the minimum perturbation δ in the input space
of x (i.e., input pixels for an image) that results in a max-
imal change in classifier(f )’s output. In this work, to test
the adversarial robustness of a model, we use one of the
strongest adversarial attacks, Projected Gradient Descent
(PGD) [18], which is considered a benchmark for adver-
sarial accuracy in other recent state-of-the-art attributional
robustness methods [7, 21, 23]. PGD is an iterative variant
of the Fast Gradient Sign Method (FGSM) [13]. PGD ad-
versarial examples are constructed by iteratively applying
FGSM and projecting the perturbed output to a valid con-
strained space S. PGD attack is formulated as follows:

xi+1 = Projx+S (xi + α(∇xL(θ, xi, y))) (13)

Here, θ denotes the classifier parameters; input and output
are represented as x and y respectively; and the classifica-
tion loss function as L(θ, x, y). Usually, the magnitude of
adversarial perturbation is constrained in a Lp-norm ball
(p ∈ {0, 2,∞}) to ensure that the adversarially perturbed



example is perceptually similar to the original sample. Note
that xi+1 denotes the perturbed sample at (i+1)th iteration.

Naturally trained models are fooled by such im-
ages generated by adversarial attacks, which are human-
imperceptible [13]. This gives rise to a different training
method that focuses on persisting in the model decisions for
both original and attacked images. Consider an image clas-
sifier f(x; θ) : x −→ Rc with parameters θ, which maps
input image x to a c-dimensional output. The network f is
called adversarially robust if for an attacked image x̂, we
have: argmax

i∈c
fi(x; θ) = argmax

i∈c
fi(x̂; θ) (14)

Attributional Attack: The goal of an attributional attack is
to devise visually imperceptible perturbations that change
the attribution map of the test input maximally while pre-
serving the predicted label. To test the attributional robust-
ness of a model, we use the Iterative Feature Importance
Attack (IFIA) in this work. As [12] convincingly demon-
strated, IFIA helps generate minimal perturbations that sub-
stantially change model interpretations while keeping their
predictions intact. The IFIA method is formally defined as
below:

argmaxδ D(I(x; f), I(x + δ; f)) (15)

subject to: ||δ||∞ ≤ ϵ
such that: argmax f(x; θ) = argmax f(x + δ; θ)

Here, I(x, f) is a vector of attribution scores over all input
pixels when an input image x is presented to a classifier net-
work f parameterized by θ. D(I(x; f), I(x + δ; f)) mea-
sures the dissimilarity between attribution vectors I(x; f)
and I(x + δ; f). In our work, we choose D as Kendall’s
correlation computed on top-k pixels as in [12].

Similar to adversarial robustness, a model has to train
differently to acquire attributional robustness. RAR [7] pro-
posed a method that consists of inner maximization and
outer minimization framework as shown below:

min
θ

[ max
x′∈N(x,ϵ)

{lCE(x′, y; θ) + S(∇Ã)}] (16)

where, lCE is standard cross-entropy loss, Ã denotes com-
parison of saliency maps w.r.t. some attribution method and
L1-norm is used as S(·).

Specifically RAR [7] used Integrated Gradient (IG)
method [25] which was followed by other attributionally
robustness training methods such as [21, 23]. It functions
as a technique to provide axiomatic attribution to different
input features proportional to their influence on the output.
IG obeys axioms of attribution (IG is candidate attribution,
among others) and can be extended to any other combina-
tion without significant modification. So we adopted IG.
Moreover, all the prior works use PGD and IG combina-
tion; hence, for a fair comparison, we followed the same

combination. Computation of IG is mathematically approx-
imated by constructing a sequence of images interpolating
from a baseline to the actual image and then averaging the
gradients of neural network output across these images, as
shown below:

IGf
i (x0, x) = (xi−xi

0)×
m∑

k=1

∂f(xi0 + k
m × (xi − xi0))
∂xi

× 1

m

(17)
Here f : Rn → C represents a deep network with C as
the set of class labels, x0 is a baseline image with all black
pixels (zero intensity value), and i is the pixel location on
input image x for which IG is being computed.

The term ∇Ã in Eqn. 16 is represented by IGf
i (x, x′).

This is similar to the difference in IG terms w.r.t the in-
put image x and perturbed image x′ i.e. IGf

i (x0, x) −
IGf

i (x0, x′), where x0 is the baseline image for IG com-
putation.

5. Experiments and Results
We conduct a comprehensive suite of experiments to

show the effectiveness of our proposed training strategy for
improving the adversarial robustness of a model when com-
pared with a model trained with any baseline attributional
robustness training technique. Our training strategy im-
proves the quality of attribution maps in previous and pro-
posed metrics and improves clean and adversarial accura-
cies. We report our results on four benchmark datasets viz.,
MNIST [17], Fashion-MNIST [30], Flower [19], and GT-
SRB [24]. Note that the attack methods used for training
and evaluations are not the same. For training, we attacked
the IG-regularizer using an iterative approach similar to the
PGD. For evaluations, we used IFIA, which attacks the Top-
K salient features in the attribution map.
Architecture Details: We follow similar architectures used
in RAR and ERAR for our experiments for a fair compar-
ison. For Fashion-MNIST and MNIST datasets, we use a
network comprising two CNN layers with 32 and 64 fil-
ters, each followed by 2 × 2 max-pooling and a fully con-
nected layer with 1024 neurons. For the others, we use
a Resnet model consisting of 5 residual units, each with
(16,16,32,64) filters. We compare our method with [23]
using WRN 28-10 [33] architecture. For the teacher net-
work, we use the same architectures of respective datasets
and trained using the [18]’s framework
Results: Table 2 reports comparisons of natural, adver-
sarial accuracies along with attributional robustness perfor-
mance (top-k intersection, Kendall’s and Spearman corre-
lation) with other baselines of attributionally and adversar-
ially robust models on Flower and GTSRB datasets. Our
experimental finding suggests including a saliency align-
ment regularizer in a baseline attributional robustness train-



ing framework, such as RAR [7] or ERAR [21], not only
improves adversarial accuracy significantly but it also helps
the model retain its attributional robustness. Thus, our
proposed training strategy allows an attributionally robust
model to attain both-way robustness. Similarly, a saliency
alignment regularizer in a baseline adversarial robustness
training framework, such as AT [18] allows the model to
retain its adversarial robustness and a robust attribution reg-
ularizer boosts the model’s attributional robustness substan-
tially. Such findings also justify the joint training strat-
egy’s potency in achieving a robust model against adver-
sarial and attributional attacks. Our proposed training strat-
egy also significantly improves attributional robustness un-
der our proposed attributional robustness evaluation setup.
We present comparative results with [23] following the sim-
ilar architectural details and different attack configurations
they used for all the results.

6. Ablation Studies
Qualitative Analysis of Object-alignment in Attribution
Maps. In Fig 3, we show comparative visualizations of at-
tribution maps generated from our model and a baseline at-
tributionally robust model [7] with sample test images from
MNIST, F-MNIST, GTSRB, and Flower datasets. These re-
sults show that our model improves attributional robustness
and produces more interpretable saliency maps compared to
the baseline attributionally robust model.
Quantitative Analysis of Object-alignment in Attribu-
tion Maps. We compare attribution maps generated by
our model as well as from another baseline attributionally
robust models [7, 21] through a quantitative measure. In
order to evaluate the quality of the attribution map quan-
titatively, we measure the similarity between attribution
maps generated by a reference model and the main model
under consideration using Top-k intersection, Kendall’s,
and Spearman correlation. Note that any model capable
of generating an interpretable attribution map can be con-
sidered the reference network for evaluation. We provide
results with the adversarially trained model as a reference
network in table [3] which shows that attribution maps
generated from our model are of better quality and more
interpretable compared to the attribution maps generated
from the baseline attributionally robust models.

Generalization of proposed metrics and training strat-
egy.

Since any adversarially robust model relies on robust
input features, such models can produce object-aligned
attribution maps that capture all crucial features. Hence,
one could evaluate our method with other adversarial
training strategies like TRADES. We show our results
with TRADES as the reference in Table 4 and show that
our training strategy shows superior performance here

too. Apart from using a different adversarially trained
reference network, we also studied the alignment of the
attribution with the object itself, i.e., we take the input itself
as reference. We can study this for datasets like MNIST
and F-MNIST by segmenting the images using simple
thresholding. We report these results in Table 5, supporting
our claim.
Effect of λ (Coefficient of Saliency Alignment Regular-

izer). We conduct experiments to understand the effect of
different λ values, i.e., regularizer coefficient of saliency
alignment regularizer in Eqn 9 on our training method.
λ values are selected through a binary search between
0.01 and 0, with the best value in the vicinity of 0.001
for all datasets. Our experimental findings indicate that a
model’s adversarial and attributional robustness improves
with increasing values of λ up to a certain point and then
drops gradually. Fig 5 shows the trend of a model’s natural,
adversarial, and attributional robustness performance when
trained with different values of λ. We notice similar trends
for all datasets considered for our experiments.

Qualitative Analysis of Stability of Attribution Map.
In Fig 4, we depict relative visualizations of attribution
maps generated using a model trained using our proposed
joint training strategy and using an adversarially trained
model [18]. It is highly indicative from these visualiza-
tions that our proposed coordinated training strategy boosts
the robustness of attribution maps against attributional at-
tacks significantly without penalizing the object alignment
or the quality of the attribution maps. Such visualiza-
tions also align with our experimental findings in tables 1
and 2, as the attributional robustness attained by the AT-
start+Regularizer model is significantly higher than the AT
model.

7. Studying Object-Alignment through Seg-
mentation Masks

The Flower dataset is provided with segmentation
masks, and we used that to see how well the attribution
maps are localized and aligned to the object. We provide
quantitative and qualitative analysis to show how our train-
ing strategy helps object alignment. For quantitative analy-
sis, we used the segmentation map provided with the dataset
to isolate the object pixels in the attribution map and com-
pared it with the original attribution map. We present the
results of our quantitative analysis in Tab. 6. We also give
the qualitative results in Fig. 6, 7, 8, 9. From these results,
it can be inferred that our training strategy produces well-
aligned and localized attribution maps.



Datasets Methods Clean Adv. Acc. Top-K Kendall AA-Top-K AA-Kendall
Nat 86.76 0.00 8.12 0.4978 3.9 0.071

AT [18] 83.82 41.91 55.87 0.7784 55.87 0.7784
AT-start + Regularizer 83.36 45.72 65.24 0.7958 57.71 0.7647

Flower RAR [7] 82.35 47.06 66.33 0.7974 33.67 0.8124
RAR-start + Regularizer 83.47 48.35 67.29 0.8091 59.64 0.7521

ERAR [21] 83.09 51.47 69.50 0.8121 57.21 0.7314
ERAR-start + Regularizer 84.06 52.18 71.07 0.8356 62.45 0.8041

Nat 98.57 21.05 54.16 0.6790 4.21 0.041
AT [18] 97.59 83.24 68.85 0.7520 62.56 0.2422

AT-start + Regularizer 97.92 98.17 74.43 0.7633 65.89 0.2718
GTSRB RAR [7] 95.68 77.12 74.04 0.7684 43.0 0.2631

RAR-start + Regularizer 96.81 80.07 75.39 0.7843 63.16 0.3012
ERAR [21] 97.61 82.33 77.15 0.7889 67.41 0.3014

ERAR-start + Regularizer 98.23 84.86 78.64 0.8017 73.45 0.3541

Table 2. Comparative results of clean, adversarial, and attributional robustness achieved by models following our training method (as in eq. 8 and eq.
9) and another baseline attributional robustness training methods. Here, by “Regularizer” we mean robust attribution regularizer + saliency alignment
regularizer (as in eq. 9). Each gray row indicates a model is trained following our proposed joint training strategy. Among the colored rows, the difference
is the model’s starting point, i.e., e.g., “AT-start” indicates that we initialize the training starting from an adversarially trained model. The Cyan row indicates
the best result achieved on the corresponding dataset.

Figure 3. Comparative visualizations of original and human-imperceptible attributionally attacked images (same predicted class) and corresponding attribution maps obtained
using RAR [7] and OUR model (RAR-start+Regularizer) for test samples from FMNIST, MNIST, Flower & GTSRB datasets. The model trained using RAR [7] generates similar
attribution maps before and after the attack, but neither captures the salient part of objects effectively. Our model not only generates similar attribution maps before and after an
attack but also produces better quality attribution maps compared to RAR. These visualizations illustrate the importance of a saliency alignment regularizer for improving the
quality of attribution maps of attributionally robust models.

Datasets Methods Top-K Kendall Spearman
AT-start + Regularizer 0.8134 0.8892 0.9733

RAR [7] 0.741 0.8626 0.9619
F-MNIST RAR-start +Regularizer 0.7941 0.9145 0.9741

ERAR [21] 0.8124 0.9452 0.9745
ERAR-start+Regularizer 0.8214 0.9752 0.9847

AT-start + Regularizer 0.9352 0.9764 0.9989
RAR [7] 0.8232 0.9336 0.9922

MNIST RAR-start + Regularizer 0.8283 0.9338 0.9923
ERAR [21] 0.8124 0.8974 0.9145

ERAR-start + Regularizer 0.8541 0.9451 0.9974
AT-start + Regularizer 0.6354 0.8695 0.9774

RAR [7] 0.565 0.7374 0.903
Flower RAR-start + Regularizer 0.5785 0.7587 0.927

ERAR [21] 0.5012 0.6945 0.8974
ERAR-start + Regularizer 0.5978 0.7841 0.9452

AT-start + Regularizer 0.6381 0.6154 0.7483
RAR [7] 0.5687 0.7568 0.7558

GTSRB RAR-start + Regularizer 0.5854 0.5804 0.764
ERAR [21] 0.5541 0.7398 0.7427

ERAR-start + Regularizer 0.6174 0.7541 0.7793

Table 3. Comparative results of goodness of attribution map obtained using OUR
model and baseline attributionally robust models such as - RAR [7] and ERAR [21],
and baseline adversarial robust models like AT [18]. The results clearly show the ef-
fectiveness of a saliency-matching regularizer for improving the quality of attribution
maps.

Dataset Model AA-
Top-K

AA-
Kendall

MNIST

AT [18]+Regularizer 62.84 0.2763
RAR [7]+Regularizer 61.69 0.3024

RAR [7] 56.48 0.2651
AT [18] 60.76 0.2214

F-
MNIST

AT [18]+Regularizer 55.21 0.6139
RAR [7]+Regularizer 54.74 0.5631

RAR [7] 50.38 0.5321
AT [18] 45.23 0.6241

Table 4. TRADES as reference

Dataset Model AA-
Top-K

AA-
Kendall

MNIST

AT [18]+Regularizer 61.47 0.2458
RAR [7]+Regularizer 59.65 0.2894

RAR [7] 54.89 0.2517
AT [18] 58.69 0.2178

F-
MNIST

AT [18]+Regularizer 50.47 0.5148
RAR [7]+Regularizer 48.57 0.4747

RAR [7] 40.25 0.4152
AT [18] 42.85 0.4875

Table 5. Object as reference



Figure 4. Comparative visualizations of original and human-imperceptible attributionally attacked images (same predicted class) and their corresponding attribution maps
obtained using AT [18] and OUR model (AT-start+Regularizer) for test samples from FMNIST, MNIST, Flower & GTSRB datasets. The model, trained using AT [18], generates
dissimilar attribution maps before and after an attack and is not robust/stable against an attributional attack. OUR model can generate similar attribution maps before and after an
attack without harming object alignment or quality of the attribution maps. These visualizations illustrate the importance of a joint training strategy for empowering adversarially
robust models with stable explanations.

Figure 5. Effect of λ(i.e., regularizer coefficient of alignment loss) on different datasets’ natural, adversarial, and attributional accuracies.

Model Top-K Kendall Spearmann
RAR [7] 98.45 0.9424 0.9752

Adv-Trained [18] 98.96 0.9574 0.9635
RAR-start 100.0 0.9852 0.9952
Adv-start 100.0 0.9985 0.9995

Table 6. Flower Dataset Segmentation

8. Comparative Results with Singh et al. [23]

We provide a detailed comparison in the main paper,
which shows improvement in the adversarial robustness of a
model when compared with a model trained with any base-
line attributional robustness methods [7,21]. We also report
improvement in clean accuracy and attributional robustness
performance with our training method. A similar trend is
visible when we consider another baseline attributional ro-
bustness technique proposed by Singh et al. [23]. As this
work used WRN28-10 [33], which is different from the net-
work used by [7,21], we separately add comparative results
with [23] here using a similar architecture in Tab.7 for fair
comparison. These experimental findings support the po-
tency of our proposed joint training strategy for improving
the stability and object-alignment of attribution maps of a
robust model, such as [23].

9. Quantitative Analysis of Attribution Map
with Naturally Trained Teacher

To show that our method works for any teacher, we quan-
titatively evaluate the performance of a model trained us-
ing a naturally trained teacher. The values corresponding
to the metrics show that our joint training strategy works
with any teacher. However, the quality and stability of
attribution maps and the model’s performance depend on
the teacher’s quality of attribution maps. One can vali-
date this observation by analyzing the trends in Table 8.
With a naturally trained teacher, the stability of the attri-
bution map is worse than the attributionally trained mod-
els like [7, 21]. Though the saliency alignment regularizer
improves the proposed attribution-aware metrics, the val-
ues are far below compared to the state-of-the-art numbers.
This discrepancy occurs due to the conflicting goals of ro-
bust attribution regularizer and saliency alignment regular-
izer with a naturally trained teacher. The robust attribu-
tion regularizer tries to maintain sparsity while the saliency
alignment regularizer pushes it toward a more distributed
naturally trained model’s attribution. Hence, our model
works with any teacher, but it is crucial to consider a teacher
that produces reasonably accurate attribution maps, like an
adversarially trained model.



Figure 6. Saliency Comparison with ground truth Segmentation map

Figure 7. Additional Visualizations: Saliency comparison with ground truth segmentation map

10. Hyperparameters and Attack Configura-
tions

Herein, we present details of training hyperparameters
as well as attack configuration for all our experiments.
For attributional attack, we use Iterative Feature Impor-
tance Attacks (IFIA) proposed by [12] (specific settings for
each dataset described below). We set the feature impor-
tance function as Integrated Gradients (IG) and dissimilar-

ity function D as Kendall’s rank order correlation across all
datasets. Also, we kept adversarial and attributional attack
configurations fixed while comparing the result with other
baseline methods for fairness.

10.1. Flower Dataset:

Training Hyperparameters: We use a momentum opti-
mizer with weight decay, momentum rate 0.9, weight decay
rate 0.0002, batch size 16, and training steps 90,000. We use



Figure 8. Additional Visualizations: Saliency comparison with ground truth segmentation map

Figure 9. Additional Visualizations: Saliency comparison with ground truth segmentation map

a learning rate schedule as follows: the first 1500 steps have
a learning rate of 10−4; after 1500 steps and until 70,000
steps have a learning rate of 10−3; after 70,000 steps have a
learning rate of 10−4. We use a PGD attack as an adversary
with a random start, the number of steps of 7, a step size
of 2, m = 5 as the number of steps for approximating IG
computation in the attack step, and adversarial budget ϵ of
8.

Attack Configuration for Evaluation: For evaluating ad-

versarial robustness, we use a PGD attack with the number
of steps of 40, adversarial budget ϵ of 8, and step size of
2. For attributional attack, we use IFIA’s top-k attack with
k = 1000, adversarial budget ϵ = 8, step size α = 1 and
number of iterations P = 100.

10.2. Fashion-MNIST Dataset:

Training Hyperparameters: We use the learning rate
as 10−4, batch size as 32, training steps as 100,000, and



Datasets Methods Clean Adv. Acc. Top-K Kendall AA-Top-K AA-Kendall
Nat 93.91 0.00 38.22 0.5643 7.2 0.3124

AT [18] 92.64 69.85 80.84 0.8414 80.84 0.8414
Flower [23] 93.21 33.08 79.84 0.8487 60.24 0.6295

[23]+Alignment 93.98 71.64 86.95 0.9271 82.95 0.8654
Nat 99.43 19.9 68.74 0.7648 5.3 0.12

AT [18] 98.36 87.49 86.13 0.8842 86.13 0.8842
GTSRB [23] 98.47 84.66 91.96 0.8934 83.37 0.8124

[23]+Alignment 99.18 88.79 93.56 0.9124 87.65 0.8541

Table 7. Comparative results of clean, adversarial, and attributional robustness achieved by a model obtained using our training method
and a baseline attributional robustness training method [23] using WRN28-10 Architecture.

Datasets Methods Clean Adv. Acc. Top-K Kendall AA-Top-K AA-Kendall
Nat 90.86 0.01 39.01 0.4610 39.01 0.4610

AT [18] 85.73 73.01 46.12 0.6251 5.41 0.1946
F-MNIST RAR [7] 85.44 70.26 72.08 0.6747 45.63 0.4215

RAR+Alignment 84.81 50.29 64.49 0.6837 51.21 0.7185
ERAR [21] 85.45 71.61 81.50 0.7216 34.56 0.4154

ERAR+Alignment 85.01 71.16 82.31 0.7368 45.84 0.5741
Nat 99.17 0.00 46.61 0.1758 46.61 0.1758

AT [18] 98.40 92.47 62.56 0.2422 4.12 0.0021
MNIST RAR [7] 98.34 88.17 72.45 0.3111 47.69 0.5741

RAR+Alignment 88.62 80.79 67.78 0.3317 61.52 0.2761
ERAR [21] 98.41 89.53 81.00 0.3494 45.45 0.2121

ERAR+Alignment 85.72 77.66 63.89 0.2625 65.46 0.2459
Nat 86.76 0.00 8.12 0.4978 8.12 0.4978

AT [18] 83.82 41.91 55.87 0.7784 3.9 0.071
Flower RAR [7] 82.35 47.06 66.33 0.7974 27.67 0.7224

RAR+Alignment 79.47 42.82 65.23 0.7691 57.64 0.6921
ERAR [21] 83.09 51.47 69.50 0.8121 53.21 0.6614

ERAR+Alignment 81.06 49.18 65.07 0.7856 59.45 0.7541
Nat 98.57 21.05 54.16 0.6790 54.16 0.6790

AT [18] 97.59 83.24 68.85 0.7520 4.21 0.041
GTSRB RAR [7] 95.68 77.12 74.04 0.7684 37.0 0.2471

RAR+Alignment 94.26 75.71 69.39 0.7249 59.16 0.6212
ERAR [21] 97.61 82.33 77.15 0.7889 51.53 0.6317

ERAR+Alignment 95.51 79.75 73.54 0.7541 68.27 0.6321

Table 8. Comparative results of clean, adversarial, and attributional robustness achieved by a model obtained using our training method
(trained with the naturally trained teacher) and another baseline attributional robustness training methods [7] [21].

Adam optimizer. We use PGD attack as the adversary with
a random start, the number of steps of 20, step size of 0.01,
m = 10 as the number of steps for approximating IG com-
putation in the attack step, and adversarial budget ϵ = 0.1.
Attack Configuration for Evaluation: For evaluating ad-
versarial robustness, we use a PGD attack with a random
start, number of steps of 100, adversarial budget ϵ of 0.1,
and step size of 0.01. For attributional attack, we use IFIA’s
top-k attack with k = 100, adversarial budget ϵ = 0.1, step
size α = 0.01 and number of iterations P = 100.

10.3. MNIST Dataset:

Training Hyperparameters: We use the learning rate
as 10−4, batch size as 50, training steps as 90,000, and
Adam optimizer. We use a PGD attack as the adversary
with a random start, the number of steps of 40, step size
of 0.01, m = 10 as the number of steps for approximating
IG computation in the attack step, and adversarial budget
ϵ = 0.3.
Evaluation Attacks Configuration: For evaluating adver-
sarial robustness, we use a PGD attack with a random start,
number of steps of 100, adversarial budget ϵ of 0.3, and step

size of 0.01. For attributional attack, we use IFIA’s top-k
attack with k = 200, adversarial budget ϵ = 0.3, step size
α = 0.01 and number of iterations P = 100.

10.4. GTSRB Dataset:

Training Hyperparameters: We use momentum with a
weight decay rate of 0.0002, momentum rate of 0.9, batch
size 32, and training steps 100,000. We use the learning
rate schedule as follows: the first 5000 steps have a learning
rate of 10−5; after 5000 steps and until 70,000 steps have a
learning rate of 10−4; after 70,000 steps have a learning rate
of 10−5. We use PGD attack as the adversary with a random
start, the number of steps of 7, step size of 2, m = 5 as the
number of steps for approximating IG computation in the
attack step, and adversarial budget ϵ = 8.

Evaluation Attacks Configuration: For evaluating adver-
sarial robustness, we use PGD attack with the number of
steps as 40, adversarial budget ϵ of 8, and step size of 2.
For evaluating attributional robustness, we use IFIA’s top-k
attack with k = 100, adversarial budget ϵ = 8, step size
α = 1 and number of iterations P = 50.



Figure 10. More comparative visualizations of the original image and human-imperceptible attributional attacked images (same predicted
class) and their corresponding attribution maps obtained using RAR [7] and OUR model for test samples each from Fashion-MNIST,
MNIST, Flower, and GTSRB datasets. Note that the model trained using RAR [7] generates a very similar attribution map before and after
the attack, but none of them captures the salient part of the objects properly. On the other hand, OUR model generates similar attribution
maps before and after an attack and can produce better quality attribution maps compared to RAR. These visualizations illustrate the
importance of an alignment regularizer for improving the quality of the attribution map.

11. More Visualizations of Object-Alignment

We provide more visualizations in this section, consist-
ing of generated attribution maps with images before and
after attack by our method as well as [7], which we couldn’t
show in the main paper due to space constraints. These ex-
amples in Fig. 10 show that our joint training method not
only helps to generate more interpretable attribution maps
compared to [7] but also maintains the stability of attribu-
tion maps before and after the attributional attack.

12. Limitations & Broader Impacts

The limitations of the proposed method are confined to
limitations in computational resources. Optimizing the ob-

jective function requires computing 2nd order derivatives;
since our method uses first-order derivatives, for IG, in
the loss function, updating requires Jacobians’ calculation,
which can involve additional computation and memory.
While our model needs additional offline training time (up
to 1.3x times the baseline on average across the datasets,
which is not prohibitive), its inference time, which matters
in practice, is the same as earlier baseline models.
Future Work. As an extension of our current study,
we like to study the efficacy of optimization problems in
dealing with loss functions that involve first-order deriva-
tives because optimizing them requires regulating higher-
order derivatives. Moreover, regulating higher-order deriva-
tives boils down to regulating the curvature of the loss



surface, another exciting direction to study the stability-
interpretability tradeoff. Due to the reach of ML models
to common people nowadays, the importance of the trust-
worthiness of AI/ML systems has increased multi-fold in
recent years. Our method aims to enhance stability and
object-alignment of attributions that help boost a model’s
applicability in the real world, especially in safety-critical
applications such as healthcare and autonomous navigation,
where interpretable and robust explanations are critical for
end users.

13. Rationale behind Inner Maximization Step
in Our Training Strategy

One of the natural questions that arise while trying to
mitigate the tradeoff between stability and object-alignment
is what happens if the network is trained with images that
affect both facets. In other words, the dataset is augmented
with images that are attacked adversarially on cross-entropy
loss which affects the object-alignment of the attribution,
and images that are attacked on their attributions which
destabilize the attribution map. To explore this direction,
we have conducted experiments that leverage these ideas in
the inner maximization step. In all of these experiments, we
use the terms XAdv and XAttr, which we explain below:

• The XAdv is an image generated after maximizing the
cross-entropy loss, i.e., vanilla PGD-attack:

XAdv = X + δ

δ = argmax
δ∈B(ϵ)

LCE(X + δ) (18)

• The XAttr is an image generated after maximizing
the S(IG(·, ·)) term of RAR-loss using the PGD-like
framework:

XAttr = X + δ

δ = argmax
δ∈B(ϵ)

∥IGly (X,X + δ)∥1 (19)

13.1. Separate-Images (SI-1)

In order to examine the validity of the iterative inner
maximization step as in Eqn. 8, we perform an experiment
as described below:

• Apply adversarial attack, such as PGD, on an input im-
age X. We denote the adversarial image as XAdv.

• For the same input image X, apply an attributional at-
tack, such as IFIA. We denote the attribution attacked
image as XAttr.

• Use the following objective function in outer mini-
mization to train a neural network:

L = LCE(x) + [LCE(XAdv) + LCE(XAttr)]

+ [∥IGly (X,XAttr)∥1] + λLdiff
(20)

We report the result of this experiment in Table 9. The
experimental findings indicate that generating an adversar-
ial image (XAdv) and attributional image (XAttr) separately
through iterative inner maximization step in our proposed
joint training framework do not help in practice. This highly
suggests that even though the adversarial (XAdv) and at-
tribution sample (XAttr) are nearby, training a model with
these images is not suitable for fulfilling our objective of
empowering a robust model with interpretable and stable
explanations.

13.2. Separate-Images-2 (SI-2)

This experiment is a slight modification of the previous
(SI-1) setup. Here, additionally, we apply a robust attribu-
tion regularizer between the adversarial sample (XAdv) and
the natural sample (X). The experiment can be done as fol-
lows:

• Apply adversarial attack, such as PGD, on an input im-
age X. We denote the adversarial image as XAdv .

• For the same input image X, apply an attributional at-
tack, such as IFIA. We denote such attribution attacked
image as XAttr.

• Use the following objective function to train the neural
network:

L = LCE(x) + [LCE(XAdv) + LCE(XAttr)]

+ [∥IGly (X,XAttr)∥1 + ∥IGly (X,XAdv)∥1]
+ λLdiff

(21)

The results for these experiments are provided in Table
9. As we see from Table 9, the outcome of this experiment
(SI-2) is very similar to that of SI-1. Such results also rein-
force the fact that generating (XAdv) and (XAttr) separately
through iterative inner maximization step is not desirable.
Hence, the iterative inner maximization step as in Eqn. 8 is
a right fit in the proposed overall optimization for our joint
training strategy.

14. More Visualizations of Stability
We also provide more visualizations in this section, con-

sisting of generated attribution maps with images before
and after attack by our method and [18], which we couldn’t
show in the main paper due to space constraints—these ex-
amples in Figs. 11 and 12 also reinforce the fact that our
joint training method helps to generate more stable attribu-
tion maps compared to [18].

15. Conclusions and Future Work
we proposed a training framework to enhance robust

models’ saliencies and improve the stability and object-



Datasets Methods Clean Adv. Acc. Top-K Kendall AA-Top-K AA-Kendall
Nat 90.86 0.01 39.01 0.4610 5.41 0.1946

AT [18] 85.73 73.01 46.12 0.6251 46.12 0.6251
SI-1 90.99 55.07 62.34 0.5624 33.48 0.4588

F-MNIST SI-2 89.71 60.9 62.15 0.5620 34.35 0.4708
RAR [7] 85.44 70.26 72.08 0.6747 51.48 0.5754

ERAR [21] 85.45 71.61 81.50 0.7216 59.21 0.6154
Nat 99.17 0.00 46.61 0.1758 4.12 0.0021

AT [18] 98.40 92.47 62.56 0.2422 62.56 0.2422
SI-1 97.43 71.76 61.84 0.2354 32.58 0.1085

MNIST SI-2 96.20 76.95 62.51 0.2397 34.42 0.1109
RAR [7] 98.34 88.17 72.45 0.3111 58.42 0.2851

ERAR [21] 98.41 89.53 81.00 0.3494 66.45 0.2821
Nat 86.76 0.00 8.12 0.4978 3.9 0.071

AT [18] 83.82 41.91 55.87 0.7784 55.87 0.7784
SI-1 84.23 36.25 52.93 0.6764 15.93 0.2119

Flower SI-2 85.57 37.64 51.85 0.6846 14.25 0.2354
RAR [7] 82.35 47.06 66.33 0.7974 33.67 0.8124

ERAR [21] 83.09 51.47 69.50 0.8121 57.21 0.7314
Nat 98.57 21.05 54.16 0.6790 4.21 0.041

AT [18] 97.59 83.24 68.85 0.7520 62.56 0.2422
SI-1 96.73 63.75 65.74 0.6351 39.54 0.1241

GTSRB SI-2 95.89 65.23 64.87 0.6523 38.29 0.1455
RAR [7] 95.68 77.12 74.04 0.7684 43.0 0.2631

ERAR [21] 97.61 82.33 77.15 0.7889 67.41 0.3014

Table 9. Comparative results of clean, adversarial, and attributional robustness achieved by models following the tradeoff experiments (as
in Eqns. 20 and 21) and another baseline attributional robustness training methods. Here, by “SI” we mean Separate Images (as in section
13).

Figure 11. More comparative visualizations of Original image and human-imperceptible attributional attacked images (same predicted
class) and their corresponding attribution maps obtained using AT [18] and OUR model for test samples each from Fashion-MNIST,
MNIST, Flower, and GTSRB datasets. Note that the model trained using AT [18] generates a dis-similar attribution map before and after
the attack. On the other hand, OUR model produces a better quality attribution map and generates similar attribution maps before and after
an attack compared to AT [18]. These visualizations illustrate the importance of a joint training strategy for improving the stability of the
attribution map without disturbing the object-alignment of the attribution map.

alignment of attribution maps without sacrificing the origi-
nal network’s goals. We also proposed new metrics to eval-
uate the robustness and quality of attribution maps. As an

extension of our current study, we plan to study the effi-
cacy of optimization problems in dealing with loss func-
tions that require computing 2nd-order derivatives. Regu-



Figure 12. More comparative visualizations of Original image and human-imperceptible attributional attacked images (same predicted
class) and their corresponding attribution maps obtained using AT [18] and OUR model for test samples each from Fashion-MNIST,
MNIST, Flower, and GTSRB datasets. Note that the model trained using AT [18] generates a dis-similar attribution map before and after
the attack. On the other hand, OUR model not only produces better quality attribution maps but also generates similar attribution maps
before and after attacks compared to AT [18]. These visualizations illustrate the importance of a joint training strategy for improving the
stability of the attribution map without disturbing the object-alignment of the attribution map.

lating higher-order derivatives requires analyzing the cur-
vature of the loss surface, which is another interesting di-
rection to study the stability-alignment relationship.
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