A. Training Procedure of CAT-RS

Algorithm 1 Confidence-aware Training for Randomized Smoothing (CAT-RS)

Require: training sample (z,y). smoothing factor o. number of noise samples M > 0. consistency targets € AK~1,
regularization strength A > 0. attack norm € > 0.

: Sample 41, -, 0y ~ N(0,021)

Dy U+ 6) = 9]

: Sample K ~ Bin(M,py), KT + max(1, K)

fori =1to M do
5 arg max 5« s, ||<e KL(F(xz +67),9)

end for

c LTy argsort(LL]K[)

L Lo pree o LS LT max; KL(F(z + 67),9)

. LCAT—RS — Llow + - ]]-[K+ — M] . Lhigh

R A A e

—_
4

B. Related Work

There have been continual attempts to provide a certificate on robustness of deep neural networks against adversarial
attacks [9,10,27,40,44,48], and correspondingly to further improve the robustness with respect to those certification protocols
[2,6,7]. Randomized smoothing [5] has attracted a particular attention among them, due to its scalability to large datasets,
e.g., ImageNet [31], and its flexibility to various applications [8, 30,34, 38,42] or other threat models [17,22,25,32,45,47].
A more extensive survey on certified robustness can be found in [24].

This work aims to improve adversarial robustness of randomized smoothing, along a line of research on designing training
schemes specialized for smoothed classifiers [15,16,33,46]. Specifically, we focus on the relationship between confidence and
robustness of smoothed classifiers, a property rarely investigated previously but few [15, 19]: e.g., [19] extends randomized
smoothing to also provide certificates on confidences, and [15] exploits over-confident adversarial examples to improve
smoothed classifiers. We leverage the property to overcome challenges in estimating sample-wise robustness, and to develop
a data-dependent adversarial training which has been also challenging even for empirical robustness [39,52].

Comparison to SmoothAdv. The idea of incorporating an adversarial search for the robustness of smoothed classifiers has
been also considered in previous works [15,33]: e.g., [33] have proposed SmoothAdv that applies adversarial training [26] to
a “soft” approximation of f given f and M noise samples:

z* = arg max <— log (]\14 ZFy(x’ + 51)>> . ©)]

[lo’—z||2<e

Our method is different from the previous approaches in which part of the inputs is adversarially optimized: i.e., we directly
optimize the noise samples J;’s instead of x, with no need to assume a soft relaxation of f. This is due to our unique
motivation of finding the worst-case Gaussian noise, and our experiments in Section 4 further support the effectiveness.

C. Experimental Details

We follow the training setup considered in most of the previous works to compare the performance of the smoothed
classifiers [5, 15, 16,46]: specifically, we mainly consider LeNet [20], ResNet-110 [1 1], and ResNet-50 for MNIST/Fashion-
MNIST, CIFAR-10/100, and ImageNet, respectively, and consider different scenarios of o € {0.25,0.5, 1.0} for randomized
smoothing. We apply the same o for both training and evaluation. When training, we use stochastic gradient descent (SGD)
optimizer with a momentum of 0.9, and weight decay of 10~*. The learning rate is initialized to 0.01 for MNIST/Fashion-
MNIST and 0.1 for CIFAR-10/100, and decreased by a factor of 0.1 for every 50 epochs. For ImageNet, we train ResNet-
50 [11] for 90 epochs, with initial learning rate of 0.1 decreased by a factor of 0.1 for every 30 epochs.



C.1. Datasets

MNIST [20] consists of 70,000 gray-scale hand-written digit images of size 28x28, 60,000 for training and 10,000 for
testing, where each is labeled to one value between 0 and 9. We do not perform any pre-processing except for normalizing the
range of each pixel from 0-255 to 0-1. The dataset can be downloaded at http://yann.lecun.com/exdb/mnist/.

Fashion-MNIST [43] consists of 70,000 gray-scale 10-category fashion product images of size 28 x 28, 60,000 for training
and 10,000 for testing. Each category is assigned to one value between 0 and 9, where each image is labeled to the value
assigned to its category. We do not perform any pre-processing except for normalizing the range of each pixel from 0-255 to
0-1. The dataset can be downloaded at https://github.com/zalandoresearch/fashion-mnist.

CIFAR-10/100 [ 18] consists of 60,000 RGB images of size 32x32, 50,000 for training and 10,000 for testing, where each
is labeled to one of 10 and 100 classes, repsectively. We use the standard data-augmentation scheme of random horizontal
flip and random translation up to 4 pixels, following the practice of other baselines [5, 15, 16,33,46]. We also normalize
the images in pixel-wise by the mean and the standard deviation calculated from the training set. The full dataset can be
downloaded at https://www.cs.toronto.edu/~kriz/cifar.html.

ImageNet [31] consists of 1,281,167 images for training, and 50,000 images for validation. Each of the images are labeled
to one of 1,000 classes. We perform 224 x 224 randomly resized cropping and horizontal flipping for the training images. For
test images, we resize the images into 256 x 256 resolution, followed by 224 x224 center cropping. The full dataset can be
downloaded at https://image—net.org/download.

C.2. Baselines

We compare our method with an extensive list of baseline methods in the literature of training smoothed classifiers: (a)
Gaussian training [5] simply trains a classifier with Gaussian augmentation (5); (b) Stability training [23] adds a cross-
entropy term between the logits from clean and noisy images; (c) SmoothAdv [33] employs adversarial training for smoothed
classifiers (9); (d) MACER [46] adds a regularization that aims to maximize a soft approximation of certified radius; (e)
Consistency [16] regularizes the variance of confidences over Gaussian noise; (f) SmoothMix [15] proposes a mixup-based
[49] adversarial training for smoothed classifiers. Whenever possible, we use the pre-trained models publicly released by the
authors to reproduce the results.

C.3. Evaluation Metrics

We follow the standard evaluation protocol for smoothed classifiers [15,16,33,46]: specifically, [5] has proposed a practical
Monte-Carlo-based certification procedure, namely CERTIFY, that returns the prediction of f and a lower bound of certified
radius, CR(f, o, x), over the randomness of n samples with probability at least 1 — «, or abstains the certification. Based on
CERTIFY, we consider two major evaluation metrics: (a) the average certified radius (ACR) [46]: the average of certified radii
on the test dataset Dy While assigning incorrect samples as 0, namely ACR := D%th\ Z(x,y)eDmst [CR(f,0,x)- ]]‘f(w):y]’
and (b) the approximate certified test accuracy at r: the fraction of the test dataset which CERTIFY classifies correctly with
the radius larger than r without abstaining. We use n = 100, 000, np = 100, and o = 0.001 for CERTIFY, following the
previous works [5, 15, 16,33].

C.4. Implementation Details

Bottom- K Gaussian loss. Although it is well-defined, the basic form of the bottom-K loss given in (6) may not handle
the cold-start problem on ps(x,y), e.g., at the early stage of the training where = + ¢ has not been adequately exposed to f,
so that it is uncertain whether the current p¢(x,y) is optimal: in this case, L*° can be minimized with an under-estimated
py =~ 0, potentially with samples those never optimize the cross-entropy losses during training. Nevertheless, we found that
a simple workaround of clamping K can effectively handle the issue, i.e., by using K+ + max(K, 1) instead of K in other
words, we always allow the “easiest” noise among the M samples to be fed into f throughout the training.

Worst-case Gaussian loss. In practice, we use the projected gradient descent (PGD) [26] to solve the inner maximization
in (7): namely, we perform a T-step gradient ascent from each §; with step size 2 - /T while projecting the perturbations
to be in the ¢5-ball of size €. This procedure would find a noise 6* that maximizes the loss around x, while maintaining the
Gaussian-like noise appearance due to the projected search in a small e-ball. In order to further make sure that the Gaussian
likelihood of §* is maintained from the original §, we additionally apply a simple trick of normalizing the mean and standard
deviation of §* to follow those of 4.
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C.5. Hyperparameters

Stability training [23] introduces a single hyperparameter -y to control the relative strength of the regularization for the logits
under Gaussian augmentation. We fix 7 = 2 for MNIST/Fashion-MNIST experiments. For CIFAR-10/100 experiments,
v = 2is used for o = 0.25,0.5, and v = 1 is used for o = 1.0.

SmoothAdv [33] uses three major hyperparameters to perform the projected gradient descent: namely, the attack radius in
terms of {3-norm ¢, the number of PGD steps 7', and the number of noises m. In our experiments, we fix 7" = 10. For
MNIST/Fashion-MNIST experiments, we fix e = 1.0 and m = 4 as well. In case of CIFAR-10/100, on the other hand, we
report the results chosen among the list of “best” configurations for each noise level which are previously searched by [33]:
specifically, we report the results of e = 1.0 and m = 4 foro = 0.25,and e = 1.0and m = 8 for o = 0.5, and ¢ = 2.0
and m = 2 for o = 1.0. When SmoothAdy is used, we adopt the warm-up strategy, i.e., we initially set ¢ = 0.0 and linearly
increase to the target value of ¢ for 10-epochs.

MACER [46] introduces four hyperparameters: the number of noises k, the coefficient for the regularization term ), the
clamping parameter for maximizing the certified radius +, and the temperature scaling parameter . For the MNIST exper-
iments, we use £k = 16,y = 8.0, = 16.0,and A = 16.0 when ¢ = 0.25, 0.5, following the configurations in [46]. For
o = 1.0, we had to reduce A = 6.0 for a stable training. For the Fashion-MNIST experiments, we follow all the hyperpa-
rameters of the MNIST experiments except A. Due to the stability issue for training, we had to set A = 8.0 and A = 2.0 for
o = 0.5 and o = 1.0, respectively. For the CIFAR-10/100 experiments, we follow the original configurations used by [46].
We set £ = 16, = 8.0, and 8 = 16.0. A\ is set to be 12.0 and 4.0 for ¢ = 0.25 and 0.5, respectively. For 0 = 1.0, the
training starts with A = O until the first learning rate decay and we set A = 12.0 thereafter.

Consistency [16] uses two hyperparameters: namely, the coefficient for the consistency term 7 and the entropy term . We
report the best results in terms of ACR among those reported by [16] varying 7. Following the original practice, we fix
~ = 0.5 throughout our experiments. For MNIST/Fashion-MNIST, we use A = 10 for ¢ = 0.25 and A\ = 5 for other noises.
For the CIFAR-10/100 experiments, we use A = 20 for ¢ = 0.25 and A\ = 10 for other noises.

SmoothMix [ | 5] introduces four hyperparameters: namely, the mixup coefficient between the original and adversarial sample
7, the step size for adversarial attack «, the number of steps for adversarial attack 7', and the number of noises m. For the
MNIST/Fashion-MNIST experiments, we fix n = 5.0,a = 1.0, and m = 4. T" = 2,4, 8 are used for the models with
o = 0.25,0.5, 1.0, respectively. For the CIFAR-10/100 experiments, we again report the best result among those reported
from [15]: ie., we fixn = 5.0,m = 2, and T" = 4, and use o« = 0.5,1.0,2.0 for ¢ = 0.25,0.5, 1.0, respectively. The
“one-step adversary” is used for o = 0.5, 1.0 to follow the best configurations reported.

CAT-RS (Ours). We introduce one main hyperparameter: namely, the coefficient \ for the worst-case loss. Although the
number of noises M, the number of attack steps 7', and the attack radius € are also can be tuned for a better performance,
we fix M = 4, T = 4, and € = 1.0 unless otherwise noted. For the MNIST/Fashion-MNIST experiments, we use the fixed
configuration of A = 1.0. For the CIFAR-10/100 experiments, we use A = 0.5,1.0,and 2.0 for ¢ = 0.25,0.5,and 1.0. For
the ImageNet experiments, we use A = 2.0. Also, we set M = 2 and T = 1 to reduce the overall training cost.

For each training sample z, we compute its soft-label 4 for (7) by the smoothed prediction of another classifier f pre-
trained via Gaussian training (5) with a fixed oy = 0.25: specifically, we obtain a soft-label § € RX by computing:

N
1 _
Je = N;ﬂ[f(wén =d, (10)

where &; ~ N(0,021). In our experiments, we use N = 10, 000 Gaussian noises for MNIST/Fashion-MNIST and CIFAR-
10/100, and N = 500 for ImageNet.

D. Results on More Datasets

D.1. MNIST

We compare the certified robustness of the smoothed classifiers trained on MNIST from our method to those from other
baselines in Table 3, considering three different smoothing factors o € {0.25,0.5,1.0}. We also present in Figure 2 the plots
of the approximate certified accuracy across varying r. Overall, the results show that CAT-RS clearly surpasses all the other
baselines in terms of ACR: i.e., our method could better balance between the clean accuracy and robustness. For o = 0.25,
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Figure 2. Comparison of approximate certified accuracy for various training methods on MNIST. The sharp drop of certified accuracy in
each plot is due to a strict upper bound in radius that CERTIFY can output for a given o, N = 100, 000, and « = 0.001.

Table 3. Comparison of ACR and approximate certified test accuracy (%) on MNIST. For each column, we set our result bold-faced
whenever the value improves the Gaussian baseline. We mark the highest and lowest values of certified accuracy at each radius in blue and
red colors, respectively.

o Methods ACR | 0.00 025 050 075 100 125 150 175 200 225 250
Gaussian [5] 0910 | 99.2 985 96.7 933 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stability [23] 0914 | 993 98.6 971 938 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothAdv [33] 0932 | 994 99.0 982 968 0.0 0.0 0.0 0.0 0.0 0.0 0.0
025 MACER [40] 0921 | 99.3 98.7 975 948 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency [16] 0928 | 99.5 989 98.0 960 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix [15] 0932 | 994 99.0 982 96.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CAT-RS (Ours) 0.933 | 994 990 982 969 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gaussian [5] 1.557 | 992 983 968 943 89.7 819 673 436 0.0 0.0 0.0
Stability [23] 1.573 | 99.2 985 97.1 948 90.7 832 692 454 0.0 0.0 0.0
SmoothAdv [33] 1.687 | 99.0 983 973 958 932 885 8l.1 675 00 0.0 0.0
050 MACER [46] 1.583 | 985 975 962 937 90.0 837 722 540 0.0 0.0 0.0

Consistency [16] 1.655 | 992 986 97.6 959 93.0 87.8 785 605 0.0 0.0 0.0
SmoothMix [15] 1.694 | 98.7 98.0 970 953 927 885 81.8 70.0 0.0 0.0 0.0

CAT-RS (Ours) 1.700 | 98.6 980 970 954 928 887 825 711 00 00 0.0

Gaussian [5] 1.619 | 963 944 914 868 798 709 594 462 325 19.7 109
Stability [23] 1.636 | 96.5 946 91.6 872 807 717 605 470 334 206 112
SmoothAdv [33] 1.779 | 958 939 90.6 865 80.8 737 646 539 433 328 222
1.00 MACER [46] 1.598 | 91.6 88.1 835 77.7 71.1 637 557 46.8 384 292 20.0

Consistency [16] 1.738 | 95.0 93.0 89.7 854 79.7 727 63.6 53.0 417 308 203
SmoothMix [15] 1.820 | 93.7 91.6 881 835 779 709 627 538 448 366 289

CAT-RS (Ours) 1.831 ‘ 932 90.5 872 831 776 717 64.0 558 472 392 30.0

we notice that some baselines, i.e., SmoothAdv and SmoothMix, already achieve a reasonably saturated level of ACR: even
in this trivial task, our method could further push the boundary of robust accuracies. In more challenging cases of o = 0.5
and o0 = 1.0, on the other hand, the improvements from CAT-RS in ACR become more evident as o increases: e.g., at
o = 1.0, compared to SmoothMix (the best-performing baseline), CAT-RS could improve the certified accuracy at r = 2.50
by 28.9% — 30.0%, resulting in ACR increment by 1.820 — 1.831. This means that our proposed CAT-RS can be more
effective at challenging tasks, where it is more likely that a given classifier gets a more diverse confidence distribution for the
training samples, so that our proposed confidence-aware training can better play its role.

D.2. Fashion-MNIST

In this section, we compare the performance on Fashion-MNIST dataset [43]. Table 4 shows ACR and certified accuracy
varying the severity of noise level o € {0.25,0.50,1.00}. Overall, CAT-RS offers a better trade-off between accuracy and
robustness improving ACR compared to the baselines. We highlight that our method is more effective in challenging setting,
e.g., o = 1.0, where leveraging confidence information is critical. For instance, CAT-RS improves the certified accuracy at
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Figure 3. Comparison of approximate certified accuracy for various training methods on CIFAR-10. The sharp drop of certified accuracy
in each plot is due to a strict upper bound in radius that CERTIFY can output for a given o, N = 100, 000, and o = 0.001.

Table 4. Comparison of ACR and approximate certified test accuracy (%) on Fashion-MNIST. For each column, we set our result bold-faced
whenever it improves the Gaussian baseline. We set our result underlined if it achieves the highest among the baselines.

o Methods ACR ‘ 0.00 025 050 075 100 125 150 175 200 225 250
Gaussian [5] 0.670 | 89.5 82.0 70.8 577 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stability [23] 0.689 | 89.2 832 732 60.6 00 0.0 0.0 0.0 0.0 0.0 0.0

SmoothAdv [33] 0.756 | 862 833 79.8 751 00 00 00 00 00 00 00
025  MACER [46] 0727 | 88.1 842 778 681 00 00 00 00 00 00 00
Consistency [16] 0.744 | 88.5 84.7 788 712 00 00 00 00 00 00 00
SmoothMix [15] 0.745 | 88.8 846 789 713 00 00 00 00 00 00 00

CAT-RS (Ours) 0.757 | 863 835 796 752 00 00 00 0.0 00 00 00

Gaussian [5] 1.056 | 862 80.7 732 648 555 456 350 241 00 00 00
Stability [23] 1.118 | 859 81.6 758 688 602 505 394 276 00 00 00
SmoothAdv [33] 1.255 | 833 802 765 719 667 612 545 459 00 00 00
050 MACER [46] 1.183 | 833 80.1 759 704 642 567 477 360 00 00 0.0

Consistency [16] 1.212 | 849 81.1 764 712 652 578 493 392 00 00 00
SmoothMix [15] 1.237 | 84.4 80.7 763 712 656 589 524 442 00 00 0.0

CAT-RS (Ours) 1274 | 825 79.6 762 724 67.8 62,5 567 49.0 00 0.0 0.0

Gaussian [5] 1316 | 79.0 743 686 625 562 500 43.1 364 292 231 175
Stability [23] 1394 | 78.1 744 702 655 594 533 464 399 328 262 196
SmoothAdv [33] 1.538 | 77.0 737 69.6 655 613 563 509 455 39.1 326 269
L00  MACER [46] 1504 | 741 712 676 639 602 557 506 455 395 334 274

Consistency [16] 1.491 | 755 724 684 645 59.8 548 494 440 379 31.7 257
SmoothMix [15] 1.534 | 76.4 726 683 633 584 537 486 434 384 333 283

CAT-RS (Ours) 1.607 ‘ 73.8 71.1 680 649 611 573 529 48.0 432 374 317

r = 2.50 by 28.3% — 31.7%, resulting in the increment of ACR by 1.534 — 1.607. It confirms that confidence-aware
training can effectively boost the robustness when smoothed via randomized smoothing.

D.3. CIFAR-100

Table 5 shows the results for o € {0.25,0.50}* on CIFAR-100 [ 18] dataset. Still, CAT-RS achieves the best ACR by boosting
the robustness of the smoothed classifier. Especially, CAT-RS improves the certified accuracy over the whole range of radii
while keeping the certified accuracy at » = 0.00 comparable to other methods. For example, compared to SmoothMix for
o = 0.50, CAT-RS achieves higher accuracy at » = 0.00 by 34.0% — 35.4% as well as at r = 1.75 by 8.2% — 9.0%,
resulting in the ACR improvement by 0.352 — 0.372. This result suggests that our confidence-aware training effectively
plays its role.

8We omit the results for o = 1.0 as all methods achieve low clean accuracy of ~ 20%, which is less meaningful.



Table 5. Comparison of ACR and approximate certified test accuracy (%) on CIFAR-100. For each column, we set our result bold-faced
whenever it improves the Gaussian baseline. We set our result underlined if it achieves the highest among the baselines.

o Methods ACR | 0.00 025 050 075 100 125 150 1.75
Gaussian [5] 0228 | 489 337 209 120 00 00 00 00
Stability [23] 0.159 | 343 234 145 78 00 00 00 00
SmoothAdv [33] 0.298 | 464 383 304 230 00 00 00 00

025  MACER [46] 0283 | 51.1 395 281 181 00 00 00 00

Consistency [16] 0.263 | 393 33.1 269 210 0.0 0.0 0.0 0.0
SmoothMix [15] 0.295 | 499 395 295 208 0.0 0.0 0.0 0.0

CAT-RS (Ours) 0.312 | 482 398 31.7 244 00 00 00 0.0

Gaussian [5] 0259 | 365 278 204 147 101 68 42 23
Stability [23] 0078 | 86 72 59 46 37 26 19 12
SmoothAdv [33] 0342 | 367 305 249 199 158 120 9.1 63

050 MACER [46] 0314 | 37.8 297 234 182 140 103 73 47

Consistency [16] 0.275 | 243 214 185 16.1 138 11.7 93 7.0
SmoothMix [15] 0352 | 340 29.1 246 203 169 139 110 82

CAT-RS (Ours) 0.368 | 35.8 305 257 212 175 144 115 8.6

D.4. ImageNet

Table 6. Comparison of ACR and approximate certified test accuracy (%) on ImageNet. For each column, we set our result bold-faced
whenever it improves the Gaussian baseline. We set our result underlined if it achieves the highest among the baselines.

Methods ACR | 00 05 10 15 20 25 3.0 35

Gaussian [5] 0875 | 4 38 33 26 19 15 12 9
Consistency [16] 0982 | 41 37 32 28 24 21 17 14
SmoothAdv [33] 1.040 | 40 37 34 30 27 25 20 15
SmoothMix [15] 1.047 | 40 37 34 30 26 24 20 17

CAT-RS (Ours) 1.071 ‘ 4 38 35 31 27 24 20 17

In this section, we compare the certified robustness of our method on ImageNet [31] dataset for 0 = 1.0. We evaluate the
performance on the uniformly-subsampled 500 samples in the ImageNet validation dataset following [5, 15, 16,33]. We train
ResNet-50 [1 1] for 90 epochs, with the initial learning rate of 0.1 decreased by a factor of 0.1 in every 30 epochs, as well as
by a factor of 0.1 for the last 5 epochs. For CAT-RS training, we use € = 1.0 for the 80 epochs of training, and increase it to
€ = 2.0 for the last 10 epochs. Also, to further alleviate the cold-start problem in (6) under many-class ImageNet, we assume
K ~ Bin(M, §.) instead of K ~ Bin(M, ps(x,y)) so that the training can avoid binomial sampling from ps(z,y) ~ 1/C
for the early stage of training. The results shown in Table 6 confirm that our method achieves better results in terms of
ACR and certified test accuracy compared to the baselines considered, verifying the effectiveness of CAT-RS even in the
large-scale dataset.
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Figure 4. Comparison of the trends between the clean accuracy vs. (a) ACR, (b) the certified accuracy at » = 1.0, and (c) at » = 2.0, that
each method exhibits as varying its hyperparameter. We assume MNIST dataset with o = 1.0 for this experiment.

Table 7. Comparison of ACR and approximate certified test accuracy on MNIST for varying hyperparameters of three different methods:
Consistency, SmoothMix, and CAT-RS (ours). We assume o = 1.0 in this experiment. “Gaussian” indicates the baseline Gaussian training.
Consistency and SmoothMix degenerates to Gaussian when their hyperparameter is set to 0.

Methods Setups  ACR | 0.00 050 1.00 150 2.00 2.0
Gaussian - 1.620 | 964 914 799 59.6 326 10.8

A= 1 1.714 | 96.0 912 81.1 635 392 162
A= 5 1.740 | 95.0 89.7 799 637 419 20.0
Consistency A =10 1.735 | 941 88.6 785 628 424 221
A=15 1.731 | 93.6 877 778 623 426 229
A=20 1.720 | 93.0 86.6 77.1 61.6 421 234
A=25 1.226 | 732 644 539 424 274 145

n= 1 1.789 | 955 905 80.7 64.1 43.1 24.1

n= 2 1.810 | 949 89.7 79.6 63.8 444 26.6

SmoothMix = 4 1.820 | 940 884 783 63.0 449 287
= 8 1.817 | 934 875 773 624 448 293

n =16 1.812 | 929 86.7 76.6 61.8 445 29.6

A=0.00 1.670 | 96.6 91.8 814 624 357 122
A=012 1.784 | 953 902 80.7 647 438 234
CAT-RS A=025 1.808 | 949 89.6 80.0 649 453 260
(Ours) A=050 1819 | 941 884 789 646 462 28.1
A=100 1831|932 872 776 640 472 300
A=200 1816 | 91.6 850 757 629 480 315
A=4.00 1777 | 872 80.1 71.6 61.7 484 334

F. Ablation Study

We conduct an ablation study to further analyze individual effectiveness of the design components in our method. Unless
otherwise noted, we use ResNet-20 [1 1] and test it on the uniformly subsampled CIFAR-10 test set of size 1,000.

Effect of \. In CAT-RS (8), A controls the relative contribution of L**€* over L'°". Here, Figure 6(a) shows the impact of
A to the model on varying A € {0.25,0.5,1.0,2.0,4.0}, assuming ¢ = 0.5. The results confirm that A successfully balances
the trade-off between robustness and clean accuracy [50]. In addition, Figure 4 in Appendix E verifies that CAT-RS offers
more effective trade-off compared to other baseline training methods.

Effect of M. We investigate the effect of the number of noise M. Figure 6(b) illustrates the certified accuracy with varying
M € {1,2,4,8}. The robustness of the smoothed classifier increases as M increases, sacrificing its clean accuracy. For large
M, the classifier can incorporate the information of many Gaussian noises and take advantage of increasing py. Therefore,
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Figure 5. Trade-off between clean vs. certified ~ Figure 6. Comparison of certified accuracy of CAT-RS ablations on CIFAR-10. We use
acc. on MNIST (o = 1.0) for varying control ~ ResNet-20 for ablation study and plot the results at ¢ = 0.5. More results for the plots
hyperparameter. can be found in Table 10 and 11, respectively.

Table 8. Comparison of ACR and approximate certified test accuracy (%) for ablations of CAT-RS. All the models are trained on CIFAR-10
with o = 0.5. L®*° as mark indicates the use of Gaussian training (5). Also, we mark “Mask” column if we apply indicator 1[K = M|
to L™ in (8).

Method (CIFAR-10) | L'** L"& Mask | ACR | 000 025 050 075 100 125 150 175
LP* (Gaussian; (5)) | L™* X | 0523 | 662 552 429 310 213 144 79 37

(a) L' only 4 X 0.508 | 67.0 546 419 297 204 131 7.6 3.6
(b) L*€ only X v 0.685 | 552 48.7 44.0 399 348 307 265 207
(c) LP*® 4 X\ . [M&r | [Pese v 0.694 | 624 544 481 414 344 281 225 17.6
v
v

(d) L' + X - L& v 0706 | 59.7 546 482 412 355 301 236 185
LT (Ours; 8)) | v | 0710 | 577 527 484 416 362 297 253 206

O > > % o

the smoothed classifier can provide a more robust prediction (3). We fix M = 4 for overall experiments as it offers a better
trade-off between accuracy and robustness.

Accuracy-robustness trade-off. To further validate that our method can exhibit a better trade-off between accuracy and
robustness compared to other methods, we additionally compare the performance trends between clean accuracy and certified
accuracy at r = 2.0 as we vary a hyperparameter to control the trade-off, e.g., A (8) in case of our method. We use ¢ = 1.0
for this experiment. We choose Consistency [16] and SmoothMix [15] for this comparison, considering that they also offer
a single hyperparameter (namely A\ and 7, respectively) for the balance between accuracy and robustness similar to our
method, while both generally achieve good performances among the baselines considered. The results plotted in Figure 5
show that CAT-RS indeed exhibits a higher trade-off frontier compared to both methods, which confirms the effectiveness of
our method. More detailed results can be found in Appendix E.

Loss design. Our loss design of L°AT®S in (8) combines several important ideas as proposed in Section 3, and here we
validate that each of the components has an individual effect in improving the certified robustness. In Table 8, we compare
several variants of L% including the followings: (a) training with L*°¥ (6) only, (b) L*&® (7) only, (c) L®2%® + ) - Lbieb,
where L := L S™M CE(F(x +6;),y) denotes the standard Gaussian training, and (d) L*** + \ - L*€", Here, notie that
(c) and (d) does not apply the masking condition 1[K = M] to L*&* (Section 3.3) compared to L°TRS,

Overall, we observe that (a) even though ACR of L'°" is slightly degraded compared to L3¢, L1°¥ can achive a better
clean accuracy instead, and (b) when combined with L?8" [1°¥ achieves a better ACR than L3¢ + ) - LP8® from a better
balancing between accuracy and robustness; and (c) yet, CAT-RS further improves ACR by applying the masking to L&,

Table 9, on the other hand, considers three variants of L*&® (7): (a) the outer maximization (7) is replaced by averaging;
(b) the label assignment § is set by F'(z) := ﬁ Zf\il F(x + 9;), i.e., the averaged prediction over M noise samples; and
(c) the label assignment g is set by the hard label y. The results show that our form of worst-case loss achieves the best
performance in terms of ACR, confirming that both designs of (a) maximizing loss over noise samples, and (b) utilizing
soft-labeled §’s in LP8® work effectively.



Table 9. Comparison of ACR and approximate certified test accuracy (%) ablations of L"&" (7). All the models are trained on CIFAR-10
with o = 0.5.

Method (CIFAR-10) ACR | 000 025 050 075 100 125 150 175
(@ & 3, (maxs: KL(F(x +67),3)) 0.694 | 612 535 467 410 341 293 236 182
(b) max; 5= KL(F(z + 67), F(x) 0.694 | 572 518 469 407 347 307 244 187
(¢) max; 5+ KL(F(z + 67),y) 0701 | 564 515 463 398 360 306 258 209

max; ;- KL(F(z + 67),9) (L*#; Ours) 0710 | 57.7 527 484 416 362 297 253 206

Table 10. Comparison of ACR and approximate certified test accuracy (%) for varying A on CIFAR-10. We assume o = 0.5.

CIFAR-10 Certified accuracy (%)
Setups ACR ‘ 00 025 05 075 10 125 15 175

A=025 0.684 | 634 556 481 404 336 271 212 152
A=050 0.692 | 609 541 476 402 350 279 235 182
A=1.00 0710 | 57.7 527 484 416 362 297 253 206
A=200 0.703 | 542 503 452 399 355 319 278 221
A=4.00 0.698 | 52.6 48.6 442 397 366 327 272 229

Table 11. Comparison of ACR and approximative certified test accuracy (%) for varying M on CIFAR-10. We assume o = 0.5.

CIFAR-10 Certified accuracy (%)
Setups ACR | 00 025 05 075 1.0 125 1.5 1.75

M=1 0661 | 662 552 429 310 213 144 179 3.7
M=2 0684 | 61.2 542 475 405 328 281 219 174
M=4 0710 | 57.7 527 484 416 362 297 253 206
M =8 0697 | 547 502 450 40.1 364 313 259 216

G. Statistical Significance of Results

Table 12. Comparison of the mean and standard deviation of ACR on MNIST and CIFAR-10. The results are calculated over 5 runs with
different seeds. For each column, we set our result bold-faced if it achieves the highest ACR among the baselines.

Dataset \ MNIST |  CIFAR-10
ACR | =025 c=05 c=10 | =05
Gaussian [5] 0.9109 =+ 0.0003 1.5581 +0.0016 1.6184 + 0.0021 0.5406 £ 0.0109
Stability [23] 0.9152 + 0.0007 1.5719 + 0.0028 1.6341 +0.0018 0.5254 + 0.0209
SmoothAdv [33] 0.9322 =+ 0.0005 1.6872 + 0.0007 1.7786 + 0.0017 0.7009 + 0.0145
MACER [46] 0.9201 =+ 0.0006 1.5899 + 0.0069 1.5950 = 0.0051 0.6698 =+ 0.0045

Consistency [16] | 0.9279 + 0.0003 1.6549 + 0.0011 1.7376 + 0.0017 0.7170 4 0.0034
SmoothMix [15] 0.9317 + 0.0002 1.6932 + 0.0007 1.8185 +0.0016 0.7362 =+ 0.0063

CAT-RS (Ours) | 0.9329 +00001 1.7004 +£00005 1.8282+00018 | 0.7525 + 0.0028

In Table 3 and 1, we compare single-seed results of ACR and approximate certified accuracy following the evaluation
scheme of the baselines [5, 15,16,23,33,46]. We report a variance analysis of results across 5 different seeds in Table 12.° Our
major performance metric of ACR shows quite robust performance over multiple runs. It confirms the statistical significance
of our improvements.

For CIFAR-10, we subsampled test CIFAR-10 of size 2000. There can be discrepancy from the value reported in Table 1 based on the full test set.



H. Detailed Results on CIFAR-10-C

In this section, we report the detailed results on CIFAR-10-C test dataset, i.e., ACR and the certified accuracy for each
corruption severity and type. Our method consistently achieves the best performance in terms of mACR and mAcc among
the baselines over severities.'”

Table 13. Comparison of average certified radius (ACR) and certified accuracy at 7 = 0.0 on CIFAR-10-C. We report the results for five
different corruption severities. We set the best values bold-faced for each column. We set the runner-up values underlined.

‘ Average Certified Radius Certifed Test Accuracy (%)
Severity |1 2 3 4 5 mACR 1 2 3 4 5  mAcc
Gaussian [5] 0.392 0363 0342 0319 0.298 0343 68.6 664 647 629 596 644
Stability [23] 0.341 0319 0299 0286 0.267 0302 670 63.1 60.1 584 550 60.7
SmoothAdv [33] | 0490 0465 0.449 0428 0404 0.447 68.1 652 637 627 586 63.7
MACER [46] 0457 0431 0409 0385 0364 0409 735 715 69.0 664 635 68.8

Consistency [16] | 0488 0.463 0442 0424 0402 0444 695 67.1 654 639 620 656
SmoothMix [15] | 0490 0.466 0.445 0422 0405 0446 721 695 668 668 633 67.7

CAT-RS (Ours) ‘0.521 0493 0476 0458 0430 0475 753 716 698 694 644 70.1

= - =, m =
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(a) Clean (b) Gaussian (c) Shot (d) Impulse (e) Defocus (f) Glass (g) Motion (h) Zoom
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- ; . -

(i) Snow (j) Frost (k) Fog (1) Bright (m) Contrast (n) Elastic (o) Pixel (p) JPEG

Figure 7. Images in CIFAR-10-C: (a) is a clean test image in CIFAR-10 dataset, and other images are the corresponding corrupted images
contained in CIFAR-10-C. All corrupted images are drawn from severity 3.

10The dataset is hosted at https: //zenodo.org/record/25359674.Yisixi8RpOI.
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Table 14. Comparison of average certified radius (ACR) on CIFAR- Table 15. Comparison of certified accuracy at r

0.0 (%) on

10-C of severity 1. We set the highest values bold-faced for each row. CIFAR-10-C of severity 1. We set the highest values bold-faced

We set the runner-up values underlined.

N N N
N AN PR
sé&o\ ‘0.&\%\ 00@6 C?}\ é\%@o OQQ‘S\‘ «gﬁ%

Type | O o o W oY P
Gaussian | 0.419 0.358 0.509 0479 0.506 0.511 | 0.549
Shot 0422 0.365 0.512 0480 0.509 0.514 | 0.550
Impulse 0.417 0.354 0507 0477 0.507 0.510 | 0.546
Defocus 0416 0.360 0.505 0.478 0.506 0.512 | 0.544
Glass 0.377 0.312 0481 0451 0.484 0.496 | 0.512
Motion 0.394 0.341 0483 0449 0482 0497 | 0.517
Zoom 0.367 0329 0487 0442 0483 0.501 | 0.520
Snow 0.412 0362 0516 0482 0.515 0.510 | 0.544
Frost 0.365 0.359 0.488 0.443 0.487 0.482 | 0.511
Fog 0.360 0.310 0.466 0436 0460 0.453 | 0.485
Bright 0421 0.375 0.517 0480 0.512 0.514 | 0.553
Contrast | 0.332 0.272 0.441 0403 0435 0424 | 0.444
Elastic 0.337 0.299 0421 0407 0422 0411 | 0.446
Pixel 0.422 0361 0509 0477 0.509 0.514 | 0.548
JPEG 0.420 0.361 0.510 0476 0.505 0.508 | 0.543
mACR ‘ 0.392 0.341 0490 0457 0.488 0.490 ‘ 0.521

Table 16. Comparison of average certified radius (ACR) on CIFAR- Table 17. Comparison of certified accuracy at r

‘%\
@0

for each row. We set the runner-up values underlined.

N N S
O Q N &\ Q N cﬁ\ Qﬁ‘*\ \0\\‘
RIS g < .&‘\ R

RPN ?,C o © 4
Type & o N ¢o >
Gaussian | 70.0 67.0 71.0 720 700 73.0 | 77.0
Shot 720 68.0 70.0 74.0 71.0 740 | 77.0
Impulse 69.0 69.0 69.0 750 71.0 74.0 | 78.0
Defocus 69.0 68.0 69.0 73.0 69.0 71.0 | 77.0
Glass 67.0 650 67.0 720 69.0 71.0 | 75.0
Motion 66.0 660 68.0 74.0 720 71.0 | 72.0
Zoom 68.0 67.0 70.0 74.0 67.0 73.0 | 75.0
Snow 710 68.0 68.0 77.0 70.0 74.0 | 79.0
Frost 710 66.0 68.0 76.0 720 720 | 74.0
Fog 68.0 670 69.0 72.0 70.0 74.0 | 72.0
Bright 71.0 70.0 67.0 76.0 71.0 75.0 | 80.0
Contrast | 66.0 62.0 64.0 72.0 67.0 69.0 | 70.0
Elastic 66.0 640 62.0 69.0 620 650 | 70.0
Pixel 67.0 69.0 69.0 750 70.0 73.0 | 77.0
JPEG 680 69.0 700 71.0 710 73.0 | 77.0
mAcc 686 670 68.1 735 695 721 ‘ 75.3

= 0.0 (%) on

10-C of severity 2. We set the highest values bold-faced for each row. CIFAR-10-C of severity 2. We set the highest values bold-faced

We set the runner-up values underlined.

N N N
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N § = N S 9

Type Gy SN W e v
Gaussian | 0.414 0.356 0.510 0476 0.506 0.515 | 0.546
Shot 0.419 0360 0505 0477 0.507 0.511 | 0.544
Impulse 0411 0345 0502 0467 0498 0.506 | 0.538
Defocus 0.397 0.344 0494 0464 0497 0.506 | 0.530
Glass 0.363 0.303 0481 0435 0485 0.497 | 0.514
Motion 0.372 0338 0.464 0440 0479 0.493 | 0.512
Zoom 0.361 0.325 0477 0436 0474 0491 | 0.514
Snow 0.361 0.334 0470 0.444 0482 0.470 | 0.512
Frost 0.321 0340 0475 0421 0444 0.447 | 0465
Fog 0.251 0.200 0.355 0.348 0.349 0.335 | 0.359
Bright 0.413 0.378 0.512 0472 0.509 0.505 | 0.555
Contrast | 0.166 0.136 0.269 0.229 0.242 0.233 | 0.253
Elastic 0.359 0307 0453 0420 0457 0.464 | 0467
Pixel 0417 0.360 0.505 0.468 0.505 0.513 | 0.544
JPEG 0.415 0.355 0500 0472 0.504 0.506 | 0.536
mACR 0.363 0319 0465 0431 0463 0.466 ‘ 0.493
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for each row. We set the runner-up values underlined.
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Type oS B o LS & o>
Gaussian | 70.0 65.0 70.0 72.0 68.0 73.0 | 76.0
Shot 70.0 69.0 68.0 74.0 69.0 72.0 | 76.0
Impulse | 700 63.0 70.0 74.0 71.0 74.0 | 75.0
Defocus | 65.0 66.0 68.0 73.0 69.0 70.0 | 76.0
Glass 650 61.0 68.0 74.0 67.0 70.0 | 72.0
Motion 69.0 64.0 68.0 74.0 73.0 720|750
Zoom 66.0 66.0 69.0 72.0 67.0 73.0 | 75.0
Snow 69.0 660 640 740 700 74.0 | 76.0
Frost 65.0 70.0 67.0 71.0 71.0 74.0 | 69.0
Fog 65.0 53.0 550 65.0 59.0 60.0 | 58.0
Bright 740 69.0 68.0 77.0 73.0 740 | 79.0
Contrast | 49.0 32.0 42.0 50.0 42.0 44.0 | 43.0
Elastic 64.0 650 650 76.0 69.0 700 | 71.0
Pixel 67.0 69.0 68.0 75.0 69.0 72.0 | 78.0
JPEG 68.0 68.0 68.0 71.0 69.0 70.0 | 75.0
mAcc 664 63.1 652 71.5 67.1 69.5 ‘ 71.6




Table 18. Comparison of average certified radius (ACR) on CIFAR- Table 19. Comparison of certified accuracy at r

0.0 (%) on

10-C of severity 3. We set the highest values bold-faced for each row. CIFAR-10-C of severity 3. We set the highest values bold-faced

We set the runner-up values underlined.
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Type Sl W >

Gaussian | 0.414 0.349 0.504 0477 0506 0.515 | 0.542
Shot 0.410 0.348 0.505 0.469 0.500 0.506 | 0.542
Impulse | 0.397 0.327 0.500 0454 0.493 0.502 | 0.528
Defocus 0.376  0.330 0.484 0.447 0.485 0.494 | 0.514
Glass 0.355 0301 0480 0.433 0479 0.491 | 0.513
Motion 0.337 0302 0455 0410 0464 0472 | 0.481
Zoom 0.347 0315 0466 0422 0462 0478 | 0.503
Snow 0.370 0.328 0.462 0436 0477 0.458 | 0.509
Frost 0.287 0276 0436 0.365 0.382 0.381 | 0.420
Fog 0.173 0.126  0.291 0.249 0.269 0.253 | 0.301
Bright 0392 0375 0.504 0.459 0.504 0.490 | 0.548
Contrast | 0.113 0.107 0.205 0.158 0.175 0.166 | 0.190
Elastic 0.338 0.298 0436 0.417 0.435 0.456 | 0.465
Pixel 0.405 0.353 0.500 0.467 0.499 0.507 | 0.537
JPEG 0.413 0.351 0501 0473 0.502 0.504 | 0.540
mACR ‘ 0342 0299 0449 0409 0442 0.445 ‘ 0.476

Table 20. Comparison of average certified radius (ACR) on CIFAR- Table 21. Comparison of certified accuracy at r

for each row. We set the runner-up values underlined.

N N 3
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Type & P < Vg
Gaussian | 72.0 66.0 71.0 73.0 70.0 76.0 | 76.0
Shot 69.0 64.0 69.0 73.0 69.0 73.0 | 76.0
Impulse 700 60.0 69.0 73.0 71.0 73.0 | 74.0
Defocus 640 66.0 69.0 71.0 70.0 710 | 73.0
Glass 67.0 63.0 71.0 73.0 69.0 71.0 | 74.0
Motion 650 61.0 68.0 74.0 71.0 68.0 | 69.0
Zoom 640 650 64.0 70.0 68.0 71.0 | 76.0
Snow 70.0 650 62.0 73.0 68.0 69.0 | 74.0
Frost 63.0 65.0 60.0 69.0 66.0 650 | 66.0
Fog 56.0 350 46.0 54.0 49.0 480 | 55.0
Bright 72.0 71.0 69.0 750 740 77.0 | 78.0
Contrast | 39.0 22.0 34.0 40.0 320 29.0 | 34.0
Elastic 64.0 62.0 68.0 71.0 650 71.0 | 70.0
Pixel 68.0 70.0 68.0 74.0 69.0 71.0 | 76.0
JPEG 67.0 660 68.0 72.0 70.0 69.0 | 76.0
mAcc ‘ 64.7 60.1 63.7 69.0 654 66.8 ‘ 69.8
= 0.0 (%) on

10-C of severity 4. We set the highest values bold-faced for each row. CIFAR-10-C of severity 4. We set the highest values bold-faced

We set the runner-up values underlined.
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Type ™ S & W o o>
Gaussian | 0.402 0.342 0.504 0468 0.505 0.510 | 0.543
Shot 0.417 0.352 0.500 0.473 0.503 0.507 | 0.541
Impulse | 0.376 0.308 0.490 0.442 0.489 0.494 | 0.531
Defocus | 0.360 0.320 0474 0432 0477 0.484 | 0.503
Glass 0.313 0.271 0474 0386 0.461 0.469 | 0.499
Motion 0.335 0.301 0.451 0405 0458 0461 | 0.481
Zoom 0.337 0.308 0.459 0410 0453 0.465 | 0.493
Snow 0.311 0.308 0.414 0.360 0.399 0.369 | 0.448
Frost 0.270 0.282 0.400 0.349 0362 0.369 | 0.405
Fog 0.125 0.084 0.196 0.186 0.195 0.167 | 0.214
Bright 0.363 0.369 0.486 0.446 0.492 0473 | 0.524
Contrast | 0.071 0.082 0.140 0.107 0.122 0.112 | 0.148
Elastic 0.309 0.263 0.438 0385 0.446 0.440 | 0.469
Pixel 0.389 0.345 0.498 0.460 0496 0.509 | 0.532
JPEG 0412 0.352 0.503 0.465 0.500 0.501 | 0.535
mACR 0.319 0.286 0.428 0385 0.424 0422 ‘ 0.458
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for each row. We set the runner-up values underlined.
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Gaussian | 71.0 64.0 68.0 72.0 70.0 72.0 | 79.0
Shot 71.0 650 68.0 72.0 700 74.0 | 77.0
Impulse 700 59.0 69.0 76.0 73.0 73.0 | 77.0
Defocus 640 660 69.0 71.0 69.0 71.0 | 73.0
Glass 640 620 70.0 72.0 700 74.0 | 73.0
Motion 660 61.0 69.0 70.0 70.0 69.0 | 72.0
Zoom 65.0 63.0 64.0 69.0 70.0 70.0 | 76.0
Snow 680 660 67.0 71.0 640 68.0 | 69.0
Frost 69.0 600 640 64.0 650 74.0 | 69.0
Fog 42.0 260 400 450 40.0 42.0 | 45.0
Bright 700 720 69.0 720 76.0 73.0 | 77.0
Contrast | 25.0 19.0 22.0 29.0 21.0 24.0 | 23.0
Elastic 640 620 63.0 69.0 650 740 | 77.0
Pixel 650 660 70.0 74.0 71.0 720 | 76.0
JPEG 69.0 650 69.0 70.0 650 720 | 78.0
mAcc 629 584 627 664 639 668 ‘ 69.4




Table 22. Comparison of average certified radius (ACR) on CIFAR- Table 23. Comparison of certified accuracy at r = 0.0 (%) on
10-C of severity 5. We set the highest values bold-faced for each row. CIFAR-10-C of severity 5. We set the highest values bold-faced

We set the runner-up values underlined. for each row. We set the runner-up values underlined.
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Type G ™ SN W @ S Type (€ e SUEEENY @ < ¢
Gaussian | 0.408 0.335 0.501 0.467 0.500 0.511 | 0.540 Gaussian | 71.0 61.0 71.0 74.0 71.0 73.0 | 76.0
Shot 0.403 0.325 0.494 0458 0.498 0.502 | 0.532 Shot 68.0 620 67.0 71.0 69.0 70.0 | 77.0
Impulse | 0.346 0275 0476 0421 0471 0.484 | 0.505 Impulse | 720 57.0 68.0 72.0 66.0 74.0 | 74.0
Defocus | 0.311 0.290 0.445 0.389 0.447 0.449 | 0471 Defocus | 62.0 61.0 67.0 68.0 69.0 70.0 | 72.0
Glass 0.308 0.269 0.449 0.372 0451 0.464 | 0.488 Glass 63.0 59.0 67.0 67.0 70.0 74.0 | 70.0
Motion 0.321 0.286 0.438 0.382 0.445 0.446 | 0.471 Motion 65.0 60.0 63.0 69.0 68.0 68.0 | 70.0
Zoom 0316 0296 0449 0.391 0.437 0.446 | 0475 Zoom 63.0 60.0 61.0 68.0 70.0 70.0 | 75.0
Snow 0.277 0.290 0.401 0.363 0.366 0.384 | 0.420 Snow 570 580 59.0 59.0 63.0 61.0 | 59.0
Frost 0.248 0.236 0.372 0.309 0.330 0.334 | 0.369 Frost 60.0 540 61.0 650 60.0 66.0 | 61.0
Fog 0.078 0.046 0.086 0.110 0.112 0.100 | 0.104 Fog 31.0 13.0 17.0 33.0 28.0 28.0 | 27.0
Bright 0.301 0.335 0415 0400 0.430 0.409 | 0.439 Bright 68.0 71.0 650 69.0 72.0 70.0 | 68.0
Contrast | 0.046 0.058 0.087 0.079 0.093 0.075 | 0.103 Contrast | 18.0 150 12.0 23.0 16.0 16.0 | 19.0
Elastic 0313 0.280 0.458 0.398 0.466 0.462 | 0.472 Elastic 640 640 650 70.0 71.0 69.0 | 69.0
Pixel 0.386 0.332 0486 0453 04838 0.503 | 0.527 Pixel 650 640 680 740 700 710 | 74.0
JPEG 0.405 0.350 0.504 0.466 0.500 0.502 | 0.530 JPEG 67.0 66.0 68.0 70.0 67.0 70.0 | 75.0

mACR ‘0.298 0.267 0.404 0.364 0402 0.405 ‘ 0.430 mAcc ‘59.6 550 586 635 620 633 ‘ 64.4
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(i) Translate (j) Edges (k) Fog (1) Motion (m) Scale (n) Shot (o) Stripe (p) Zigzag

Figure 8. Images in MNIST-C test dataset: (a) is a clean test image in MNIST, and other images are the corresponding corrupted images
contained in MNIST-C.

I. Results on MNIST-C

We perform the evaluation on MNIST-C [29], 15 replicas of MNIST [20] dataset, where each replica consists of a different
type of corruption (e.g., rotate, shear, spatter, etc.). We evaluate the corruption performance of the smoothed classifiers on
the full test dataset of MNIST-C after training the base classifiers with MNIST dataset. In this experiment, we use ¢ = 0.25.
Although the improvement of CAT-RS in MNIST-C is less dramatic than in CIFAR-10-C due to the fact that confidence
information is more important in more complex dataset, CAT-RS still achieves higher mACR compared to the baselines
considered.'!

Table 24. Comparison of average certified radius (ACR) on MNIST- Table 25. Comparison of certified accuracy at r = 0.0 (%) on
C. We set the highest values bold-faced for each row. We set the MNIST-C. We set the highest values bold-faced for each row, and

runner-up values underlined. the runner-up values underlined.
N N N o N N N @
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& ‘é\\\\% & ¥ & & T & ‘6\\\d & P & 8T
Type ¢ NG Type e o W v
Bright 0.540 0.599 0.320 0.606 0.410 0316 | 0.319 Bright 91.6 98.1 687 971 820 63.1 | 645
Line 0.856 0.865 0.906 0.867 0.885 0.901 | 0.910 Line 98.5 98.7 991 986 989 99.1 | 99.1
Glass 0.655 0.643 0.743 0.670 0.686 0.710 | 0.758 Glass 96.6 96.6 97.3 96.8 96.7 96.6 | 97.3
Impulse | 0.785 0.800 0.868 0.813 0.828 0.847 | 0.876 Impulse | 97.9 983 989 985 987 98.7 | 98.9
Rotate 0.762 0.776 0.833 0.793 0.822 0.831 | 0.835 Rotate 92,5 932 944 936 944 94.7 | 94.1
Shear 0.850 0.857 0.900 0.869 0.891 0.899 | 0.902 Shear 974 979 984 98.1 983 98.5 | 983
Spatter 0.841 0.844 0.895 0.860 0.880 0.892 | 0.902 Spatter 97.9 98.1 98.8 983 98.8 989 | 98.9
Translate | 0.315 0.332 0.392 0346 0.388 0.449 | 0.366 Translate | 51.7 52.8 55.6 534 566 64.6 | 51.4
Edges 0.354 0390 0.496 0.430 0.489 0.486 | 0.519 Edges 723 719 721 751 735 722 | 73.8
Fog 0.116 0.097 0.108 0.123 0.094 0.102 | 0.112 Fog 547 558 352 622 350 248 | 358
Motion 0.626 0.610 0.704 0.627 0.675 0.730 | 0.704 Motion 947 948 959 949 962 97.1 | 95.1
Scale 0.637 0.636 0.727 0.666 0.736 0.766 | 0.714 Scale 94.0 943 934 949 958 96.2 | 91.6
Shot 0.836 0.835 0.902 0.856 0.886 0.894 | 0.907 Shot 98.6 98.6 99.0 98.8 99.1 99.0 | 99.0
Stripe 0.532 0.590 0.678 0.700 0.771 0.736 | 0.759 Stripe 76.8 81.7 882 899 940 925|920
Zigzag 0.726 0.740 0.794 0.746 0.779 0.774 | 0.815 Zigzag 902 919 93,6 912 929 93.1 | 95.2
mACR ‘ 0.629 0.641 0.684 0.665 0.681 0.689 ‘ 0.693 mAcc 87.0 882 859 894 874 859 | 857

The dataset is hosted at ht tps://zenodo.org/record/32395434# . YisCti8RpQJ.


https://zenodo.org/record/3239543#.YisCti8RpQJ

