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Abstract

Any classifier can be “smoothed out” under Gaussian

noise to build a new classifier that is provably robust to `2-

adversarial perturbations, viz., by averaging its predictions

over the noise via randomized smoothing. In this paper, we

propose a simple training method leveraging the fundamen-

tal trade-off between accuracy and (adversarial) robustness

to obtain more robust smoothed classifiers, in particular,

through a sample-wise control of robustness over the train-

ing samples. We make this control feasible by using “accu-

racy under Gaussian noise” as an easy-to-compute proxy

of adversarial robustness for an input: specifically, we dif-

ferentiate the training objective depending on this proxy to

filter out samples that are unlikely to benefit from the worst-

case (adversarial) objective. Our experiments show that the

proposed method, despite its simplicity, consistently exhibits

improved certified robustness upon state-of-the-art training

methods. Somewhat surprisingly, we find these improve-

ments persist even for other notions of robustness, e.g., to

various types of common corruptions.

1. Introduction

Despite these tremendous advances in deep neural net-

works for a variety of computer vision tasks towards artifi-

cial intelligence, the broad existence of adversarial exam-

ples [35] is still a significant aspect that reveals the gap be-

tween machine learning systems and humans: for a given

input x (e.g., an image) to a classifier f , say a neural net-

work, f often permits a perturbation δ that completely flips

the prediction f(x + δ), while δ is too small to change

the semantic in x. In response to this vulnerability, there

have been tremendous efforts in building robust neural net-

work based classifiers against adversarial examples, either

in forms of empirical defenses [1, 3, 36], which are largely

based on adversarial training [26,39,41,50,51], or certified

defenses [5,40,44,48], depending on whether the robustness

claim can be theoretically guaranteed or not.

*Equal contribution

Randomized smoothing [5, 21] is currently a prominent

approach in the context of certified defense, thanks to its

scalability to arbitrary neural network architectures while

previous methods have been mostly limited in network sizes

or require strong assumptions, e.g., Lipschitz constraint,

on their architectures. However, even with randomized

smoothing, the trade-off between robustness and accuracy

[37,50] has been well evidenced, i.e., increasing the robust-

ness for a specific input can be at the expense of decreased

accuracy for other inputs: e.g., [50] has shown that the

(empirical) robustness of a classifier can be further boosted

in training by paying more expense in accuracy. A simi-

lar trend can be also observed with certified defenses, e.g.,

randomized smoothing, as the clean accuracy of smoothed

classifiers are usually less than those one can obtain from

the standard training on the same architecture [5].

Contribution. In this paper, we develop a novel train-

ing method for randomized smoothing, coined Confidence-

Aware Training for Randomized Smoothing (CAT-RS),

which incorporates a sample-wise control of target robust-

ness on-the-fly motivated by the accuracy-robustness trade-

off in smoothed classifiers. Intuitively, a natural approach

one can consider in response to the trade-off in robust train-

ing is to appropriately lower the robustness requirement for

“hard-to-classify” samples while maintaining those for the

remaining (“easier”) samples: here, the challenges are (a)

which samples should we choose for the control in train-

ing, and (b) how to control their target robustness. For both

(a) and (b), the major difficultly stems from that evaluating

adversarial robustness is computationally hard in practice.

To implement this idea, we propose to use the sample-wise

confidence of smoothed classifiers as an efficient proxy of

the certified robustness, and defines two new losses, namely

the bottom-K and worst-case Gaussian training, each of

those targets different levels of confidence so that the over-

all training can prevent low-confidence samples from being

enforced to increase their robustness.

We verify the effectiveness of our proposed method

through an extensive comparison with existing state-of-

the-art robust training methods for smoothed classifiers:



(a) Bottom-K loss (b) Worst-case loss

Figure 1. Illustration of the two proposed losses, i.e., the (a)

bottom-K and (b) worst-case Gaussian losses, respectively. Each

× represents Gaussian noise around x. We aim to minimize the

cross-entropy loss only for ×’s marked as red for each case.

it shows that CAT-RS consistently improves the previous

state-of-the-art results on certified robustness, by (a) max-

imizing the robust radii of high-confidence samples while

(b) reducing the risk of deteriorating the accuracy at low-

confidence samples. We also find that CAT-RS also makes

smoothed classifiers to generalize beyond adversarial ro-

bustness, from its significant gains in common corruption

robustness: it confirms the importance of confidence infor-

mation in adversarial training.

2. Preliminaries

Adversarial robustness. Consider an i.i.d. dataset D =
{(xi, yi)}

n
i=1 from a certain distribution P , where x ∈ R

d

and y ∈ Y := {1, · · · ,K}, which forms a classification

problem with K classes. Let f : R
d → Y be a (dis-

crete) classifier. One can additionally consider a differen-

tiable F : Rd → ∆K−1 to allow a gradient-based optimiza-

tion assuming f(x) := argmaxk∈Y Fk(x), where ∆K−1

is probability simplex in R
K . In the context of adversar-

ial robustness (and for other notions of robustness as well),

the i.i.d. assumption on the future samples does not hold

anymore: instead, it additionally assumes that the samples

can be arbitrarily perturbed up to a certain restriction, e.g.,

a bounded `2-ball, and focuses on the worst-case perfor-

mance over the perturbed samples. One possible way to

quantify this scenario is to consider the average minimum-

distance of adversarial perturbation [3, 4, 28], namely:

R(f ;P ) := E(x,y)∼P

[

min
f(x′) 6=y

||x′ − x||2

]

. (1)

Randomized smoothing. The essential challenge in

achieving adversarial robustness in neural networks, how-

ever, stems from that directly evaluating (1) (and further

optimizing it) is usually computationally infeasible. Ran-

domized smoothing [5, 21] bypasses this difficulty by con-

structing a new classifier f̂ from f instead of letting f to

directly model the robustness: specifically, it transforms the

base classifier f with a certain smoothing measure, where

in this paper we focus on the case of Gaussian N (0, σ2I):

f̂(x) := argmax
c∈Y

Pδ∼N (0,σ2I) (f(x+ δ) = c) . (2)

Then, the robustness of f̂ at (x, y), namely R(f̂ ;x, y), can

be explicitly lower-bounded in terms of the certified radius

R(f̂ , x, y), e.g., [5] showed that the following bound holds

which is tight for `2-adversary:

R(f̂ ;x, y) ≥ σ · Φ−1(pf (x, y)) =: R(f̂ , x, y) (3)

where pf (x, y) := Pδ(f(x+ δ) = y), (4)

provided that f̂(x) = y, otherwise R(f̂ ;x, y) := 0.1 Here,

we remark that the formula for certified radius (3) is es-

sentially a function of pf (4), which represents the predic-

tion confidence of f̂ at x, or equivalently, the accuracy of

f(x+ δ) over δ ∼ N (0, σ2I).

3. Confidence-aware Randomized Smoothing

We aim to develop a new training method to maximize

the certified robustness of a smoothed classifier f̂ , consid-

ering the trade-off relationship between robustness and ac-

curacy [50]: even though randomized smoothing can be ap-

plied for any classifier f , the actual robustness of f̂ depends

on how much f classifies well under presence of Gaussian

noise, i.e., by pf (x, y) defined in (4). A simple way to

train f for a robust f̂ , therefore, is to minimize the standard

cross-entropy loss CE with Gaussian noise as in [5]:

min
F

E (x,y)∼P

δ∼N (0,σ2I)

[CE(F (x+ δ), y)] . (5)

In this paper, we extend this basic form of training to

incorporate a confidence-aware strategy to decide which

noise samples δi ∼ N (0, σ2I) should be used for train-

ing. Ideally, given (4), one may wish to obtain a classifier

f that achieves pf (x, y) ≈ 1 for every (x, y) ∼ P to max-

imize its certified robustness. In practice, however, such

a case is highly unlikely, and there usually exists a sam-

ple x that pf (x, y) should be quite lower than 1 to main-

tain the discriminativity with other samples: in other words,

these samples can be actually “beneficial” to be misclassi-

fied at some (hard) Gaussian noises, otherwise the classifier

has to memorize the noises to correctly classify them. On

the other hand, for the samples which can indeed achieve

pf (x, y) ≈ 1, the current Gaussian training (5) may not be

able to provide enough samples of δi for x throughout the

training, as pf (x, y) ≈ 1 implies that f(x + δ) must be

correctly classified “almost surely” for δi ∼ N (0, σ2I).
In these respects, we propose two different variants of

Gaussian training (5) that address each of the possible cases,

1
Φ denotes the c.d.f. of the standard normal distribution.



i.e., whether (a) pf (x, y) < 1 or (b) pf (x, y) ≈ 1, namely

with (a) bottom-K and (b) worst-case Gaussian training,

respectively. During training, the method first estimates

pf (x, y) for each sample by computing their accuracy over

M random samples of δ ∼ N (0, σ2I), and applies different

forms of loss depending on the value.

3.1. Bottom­K Loss for Low­confidence Samples

Consider a base classifier f and a training sample

(x, y) ∈ D, and suppose that pf (x, y) � 1, e.g., f̂ has a

low-confidence at x. Figure 1(a) visualizes this scenario: in

this case, by definition of pf (x, y) in (4), f(x + δ) would

be correctly classified to y only with probability p over

δ ∼ N (0, σ2I), and this implies either (a) x + δ has not

yet been adequately exposed to f during the training, or (b)

x+δ may be indeed hard to be correctly classified for some

δ, so that minimizing the loss at these noises could harm

the generalization of f̂ . The design goal of our proposed

bottom-K Gaussian loss is to modify the standard Gaus-

sian training (5) to reduce the optimization burden from (b)

while minimally retaining its ability to cover enough noise

samples during training for (a).

We first assume M random i.i.d. samples of δ, say

δ1, δ2, · · · , δM ∼ N (0, σ2I). One can notice that the ran-

dom variables 1[f(x+ δi) = y]’s are also i.i.d. each, which

follows the Bernoulli distribution of probability pf (x, y).
This means that, if the current pf (x, y) is the value one at-

tempts to keep instead of further increasing it, the number

of “correct” noise samples, namely
∑

i 1[f(x + δi) = y],
would follow the binomial distribution K ∼ Bin(M,p) -

this motivates us to consider the following loss that only

minimizes the K-smallest cross-entropy losses out of from

M Gaussian samples around x:

Llow :=
1

M

K
∑

i=1

CE(F (x+ δπ(i)), y), (6)

where K ∼ Bin(M,pf (x, y)). Here, π(i) denotes the in-

dex with the i-th smallest loss value in the M samples.

3.2. Worst­case Loss for High­confidence Samples

Next, we focus on the case when pf (x, y) ≈ 1, i.e., f̂

has a high confidence at x, as illustrated in Figure 1(b). In

contrast to the previous scenario in Section 3.1 (and Fig-

ure 1(a)), now the major drawback of Gaussian training (5)

rather comes from the rareness of hard noises in training:

considering that one can only present a limited number of

noise samples to f throughout its training, naı̈vely minimiz-

ing (5) may not cover some “potentially hard” noise sam-

ples, and this would result in a significant harm in the final

certified radius. The purpose of worst-case Gaussian train-

ing is to overcome this lack of samples via an adversarial

search around each of the noise samples.

Specifically, for given M samples of Gaussian noise δi
as considered in (6), namely δ1, · · · , δM ∼ N (0, σ2I), we

propose to modify (5) to find the worst-case noise δ∗ (a)

around an `2-ball for each noise as well as (b) among the M

samples, and minimize the loss at δ∗ instead of the average-

case loss. To find such worst-case noise, our proposed loss

optimizes a given δi to maximize the consistency of its pre-

diction from a certain label assignment ŷ ∈ ∆K−1 per x:

Lhigh := max
i

max
‖δ∗

i
−δi‖2≤ε

KL(F (x+ δ∗i ), ŷ), (7)

where KL(·, ·) denotes the Kullback-Leibler divergence.

This objective is motivated by [16] that the consistency

of prediction across different Gaussian noise controls the

trade-off between accuracy and robustness of smoothed

classifiers. Notice from (7) that the objective is equivalent

to the cross-entropy loss if ŷ is assigned as (hard-labeled)

y, while we observe having a soft-labeled ŷ is beneficial in

practice: its log-probability, where the consistency targets,

can now be bounded so F (x+δ∗i )’s can also minimize their

variance in the logit space.

There can be various ways to assign ŷ for a given x: one

of reasonable strategies, which we use in this paper as well,

is to assign ŷ by the smoothed prediction of another classi-

fier f̄ , pre-trained on the same dataset D via Gaussian train-

ing (5) with some σ0. This approach is straightforward to

compute, and would (a) naturally reflect the sample-wise

difficulty in classification under Gaussian noise, while (b)

maintaining (most of) the label information given from y.

3.3. Overall Training Scheme

Given the two losses Llow and Lhigh defined in Sec-

tion 3.1 and 3.2, respectively, we now define the full ob-

jective of our proposed Confidence-Aware Training for Ran-

domized Smoothing (CAT-RS). Overall, in order to differen-

tiate how to combine the two losses per sample basis, we use

the smoothed confidence pf (x, y) (4) as the guiding proxy:

specifically, we apply the worst-case loss of Lhigh only for

the samples where pf (x, y) is already high enough. In prac-

tice, we estimate pf (x, y) with the M noise samples i.e., by

p̂f (x, y) :=
1
M

∑M
i=1 1[f(x+ δi) = y]. Then, we consider

a simple and intuitive masking condition of “K = M” to

activate Lhigh, where K ∼ Bin(M, p̂f (x, y)) is the random

variable defined in (6) for Llow. The final loss becomes:

LCAT-RS := Llow + λ · 1[K = M ] · Lhigh, (8)

where 1[·] is the indicator random variable, and λ > 0.

The complete procedure of computing our proposed CAT-

RS loss can be found in Algorithm 1 of Appendix A.

4. Experiments

We evaluate the effectiveness of our proposed training

scheme based on various well-established image classifica-



Table 1. Comparison of ACR and approximate certified test ac-

curacy (%) on CIFAR-10. For each column, we set our result

bold-faced whenever the value improves the Gaussian baseline.

We mark the highest and lowest values of certified accuracy at

each radius in blue and red colors, respectively.

σ Methods ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

Gaussian [5] 0.424 76.6 61.2 42.2 25.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Stability [23] 0.420 73.0 58.9 42.9 26.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothAdv [33] 0.544 73.4 65.6 57.0 47.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MACER [46] 0.531 79.5 69.0 55.8 40.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Consistency [16] 0.552 75.8 67.6 58.1 46.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SmoothMix [15] 0.553 77.1 67.9 57.9 46.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CAT-RS (Ours) 0.562 76.3 68.1 58.8 48.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.50

Gaussian [5] 0.525 65.7 54.9 42.8 32.5 22.0 14.1 8.3 3.9 0.0 0.0 0.0

Stability [23] 0.531 62.1 52.6 42.7 33.3 23.8 16.1 9.8 4.7 0.0 0.0 0.0

SmoothAdv [33] 0.684 65.3 57.8 49.9 41.7 33.7 26.0 19.5 12.9 0.0 0.0 0.0

MACER [46] 0.691 64.2 57.5 49.9 42.3 34.8 27.6 20.2 12.6 0.0 0.0 0.0

Consistency [16] 0.720 64.3 57.5 50.6 43.2 36.2 29.5 22.8 16.1 0.0 0.0 0.0

SmoothMix [15] 0.737 61.8 55.9 49.5 43.3 37.2 31.7 25.7 19.8 0.0 0.0 0.0

CAT-RS (Ours) 0.757 62.3 56.8 50.5 44.6 38.5 32.7 27.1 20.6 0.0 0.0 0.0

1.00

Gaussian [5] 0.511 47.1 40.9 33.8 27.7 22.1 17.2 13.3 9.7 6.6 4.3 2.7

Stability [23] 0.514 43.0 37.8 32.5 27.5 23.1 18.8 14.7 11.0 7.7 5.2 3.1

SmoothAdv [33] 0.790 43.7 40.3 36.9 33.8 30.5 27.0 24.0 21.4 18.4 15.9 13.4

MACER [46] 0.744 41.4 38.5 35.2 32.3 29.3 26.4 23.4 20.2 17.4 14.5 12.1

Consistency [16] 0.756 46.3 42.2 38.1 34.3 30.0 26.3 22.9 19.7 16.6 13.8 11.3

SmoothMix [15] 0.773 45.1 41.5 37.5 33.8 30.2 26.7 23.4 20.2 17.2 14.7 12.1

CAT-RS (Ours) 0.815 43.2 40.2 37.2 34.3 31.0 28.1 24.9 22.0 19.3 16.8 14.2

tion benchmarks, including MNIST [20], Fashion-MNIST

[43], CIFAR-10/100, and ImageNet [18].2 For a fair com-

parison, we follow the standard protocol and training setup

of the previous works [5,15,16,46]:3 specifically, we use (a)

the average certified radius (ACR) [46] and (b) the approx-

imate certified test accuracy at r as the major performance

metrics throughout experiments.4

4.1. Certified Adversarial Robustness

We compare the certified robustness of the smoothed

classifiers trained on CIFAR-10 in Table 3, considering

three different smoothing factors σ ∈ {0.25, 0.5, 1.0}.5 For

the baselines, we report best-performing configurations for

each σ in terms of ACR among reported in previous works,

so that the hyperparameters of the same method can vary

over σ (the details can be found in Appendix C.5). Overall,

CAT-RS achieves a significant improvement of ACR com-

pared to the baselines. In case of σ = 0.25 and σ = 0.5,

CAT-RS clearly offers a better trade-off between the clean

accuracy and robustness compared to other baselines. Es-

pecially, CAT-RS achieves higher approximate certified ac-

curacy for all radii compared to SmoothMix in case of

σ = 0.5. For σ = 1.0, the ACR of our method signifi-

cantly surpasses the previous best model, SmoothMix, by

0.773 → 0.815. Remarkably, the improvement from CAT-

RS is most evident in σ = 1.0, suggesting the effectiveness

of confidence-aware training in adversarial robustness.

2Results on more datasets, viz., MNIST, Fashion-MNIST, CIFAR-100,

and ImageNet can be found in Appendix D.
3The full details, e.g., training setups, baselines, evaluation metrics, and

hyperparameters, can be found in Appendix C.
4We also perform an ablation study in Appendix F, showing that,

e.g., the major hyperprameter λ (8) can effectively balance the accuracy-

robustness trade-off, which is favorable in practical uses.
5Figure 3 in Appendix also plots the certified accuracy over r.

Table 2. Comparison of average certified radius (ACR) on

CIFAR-10-C. We report the average across five different corrup-

tion severities. We set the highest values bold-faced for each row.

We set the runner-up values underlined.

Type Gau
ssi

an
[5

]

Stab
ili

ty
[2

3]

SmoothAdv [3
3]

M
ACER

[4
6]

Consis
ten

cy
[1

6]

SmoothM
ix

[1
5]

CAT-R
S

(O
urs

)

Gaussian 0.412 0.348 0.506 0.473 0.505 0.513 0.544

Shot 0.414 0.350 0.503 0.472 0.503 0.508 0.542

Impulse 0.389 0.322 0.495 0.452 0.492 0.499 0.530

Defocus 0.372 0.329 0.480 0.442 0.482 0.489 0.512

Glass 0.343 0.291 0.473 0.415 0.472 0.483 0.505

Motion 0.352 0.314 0.458 0.417 0.465 0.474 0.492

Zoom 0.346 0.315 0.468 0.420 0.462 0.476 0.501

Snow 0.346 0.325 0.452 0.417 0.448 0.438 0.487

Frost 0.298 0.298 0.434 0.377 0.401 0.403 0.434

Fog 0.197 0.153 0.279 0.266 0.277 0.262 0.293

Bright 0.378 0.366 0.487 0.451 0.489 0.478 0.524

Constrast 0.146 0.131 0.228 0.195 0.213 0.202 0.228

Elastic 0.331 0.290 0.441 0.405 0.445 0.447 0.464

Pixel 0.404 0.350 0.500 0.465 0.500 0.509 0.538

JPEG 0.413 0.354 0.504 0.470 0.502 0.504 0.537

mACR 0.343 0.302 0.447 0.409 0.444 0.446 0.475

4.2. Corruption Robustness

We also examine the performance of our training method

on CIFAR-10-C [13], a collection of 75 replicas of the

CIFAR-10 test dataset, which consists of 15 different types

of common corruptions (e.g., fog, snow, etc.), each of which

contains 5 levels of corruption severities.6 For a given

smoothed classifier trained on (“clean”) CIFAR-10, we re-

port ACR for each corruption type of CIFAR-10-C after

averaging the values over five severity levels, as well as

their means over the types, i.e., as the mean-ACR (mACR).7

Here, we uniformly subsample each corrupted dataset with

size 100, i.e., to have 7,500 in total, and use σ = 0.25.

Table 2 summarizes the results. Overall, we observe that

CAT-RS consistently achieves the best ACRs on all the cor-

ruption types, thus also in mACR. In particular, we find

CAT-RS can better maintain the (“clean”) ACR given in

Table 1 (σ = 0.25) under corruptions compared to other

methods, as shown in the reduced overall gaps in ACR. In

other words, CAT-RS can improve smoothed classifiers to

generalize better on unseen corruptions, at the same time

maintaining the robustness for such inputs. It is remark-

able that the observed gains are not from any prior knowl-

edge about multiple corruption [12,14] (except for Gaussian

noise), but from a better training method. Given the limited

gains from other baseline methods on CIFAR-10-C, we at-

tribute that the sample-dependent calibration of training ob-

jective, a unique aspect of CAT-RS compared to prior arts, is

important to explain the effectiveness of CAT-RS on out-of-

distribution generalization: e.g., although SmoothAdv also

adopts adversarial search in training similarly to CAT-RS, it

could not improve mAcc on CIFAR-10-C from Gaussian.

6Additional results on MNIST-C [29] can be also found in Appendix I.
7We also report the certified accuracy at r = 0.0 and the mean-

accuracy (mAcc) with more detailed results in Appendix H, showing that

CAT-RS also achieves the best mAcc compared to other methods.
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