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Algorithm 1 Oracle-Aligned Adversarial Training

1: Input: Deep Neural Network fθ with parameters θ,
Training Data {xi, yi}Mi=1, Epochs T , Learning Rate
η, Perturbation budget εmax, Adversarial Perturbation
function A(x, y, ℓ, ε) which maximises loss ℓ

2: for epoch = 1 to T do
3: ε̃ = max{εmax/4, εmax · epoch/T}
4: for i = 1 to M do
5: δi ∼ U(−min(ε̃, εmax/4),min(ε̃, εmax/4))
6: if ε̃ < 3/4 · εmax then
7: ℓ = ℓCE(fθ(xi+ δi), yi) , δ̃i = A(xi, yi, ℓ, ε̃)

8: Ladv = KL
(
fθ(xi + δ̃i)||fθ(xi)

)
9: else if i% 2 = 0 then

10: ℓ = ℓCE(fθ(xi + δi), yi) , δ̂i =

A(xi, yi, ℓ, εref ) , δ̃i = Π∞(δ̂i, ε̃)

11: Ladv = KL
(
fθ(xi + δ̃i) || α · fθ(xi) + (1 −

α) · fθ(xi + δ̂i)
)

12: else
13: δi ∼ U(−ε̃, ε̃ )
14: ℓ = ℓCE(fθ(xi+ δi), yi)−LPIPS(xi, xi+ δi),

δ̃i = A(xi, yi, ℓ, ε̃)

15: Ladv = KL
(
fθ(xi + δ̃i) || fθ(xi)

)
16: L = ℓCE(fθ(xi), yi) + Ladv

17: θ = θ − η · ∇θL

1. Related Works

Robustness against imperceptible attacks: Following
the discovery of adversarial examples by Szegedy et al.,
[15], a myriad of adversarial attack and defense methods
have been proposed. Adversarial Training has emerged as
the most successful defense strategy against ℓp norm bound
imperceptible attacks. PGD Adversarial Training (PGD-
AT) proposed by Madry et al. [7] constructs multi-step ad-
versarial attacks by maximizing Cross-Entropy loss within
the considered threat model and subsequently minimizes
the same for training.

*Equal contribution
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Figure 2. LPIPS distance between clean and adversarially per-
turbed images. Attacks generated from PGD-AT [7, 8] model
(Oracle-Sensitive) and Normally Trained model (Oracle-Invariant)
are considered. (a) PGD-AT ResNet-18 model is used for compu-
tation of LPIPS distance (b) Normally Trained AlexNet model is
used for computation of LPIPS distance. PGD-AT model based
LPIPS distance is useful to distinguish between Oracle-Sensitive
and Oracle-Invariant attacks.

This was followed by several adversarial training meth-
ods [8,10,13,16,18,19] that improved accuracy against such
imperceptible threat models further.

Zhang et al. [18] proposed the TRADES defense, which
maximizes the Kullback-Leibler (KL) divergence between
the softmax outputs of adversarial and clean samples for
attack generation, and minimizes the same in addition to
the Cross-Entropy loss on clean samples for training.

Improving Robustness of base defenses: Wu et al. [16]
proposed an additional step of Adversarial Weight Perturba-
tion (AWP) to maximize the training loss, and further train
the perturbed model to minimize the same. This generates
a flatter loss surface [14], thereby improving robust gener-
alization. While this can be integrated with any defense,
AWP-TRADES is the state-of-the-art adversarial defense
today.

On similar lines, the use of stochastic weight averaging
of model weights [6] is also seen to improve the flatness
of loss surface, resulting in a boost in adversarial robust-
ness [3,5]. Recent works attempt to use training techniques
such as early stopping [10], optimal weight decay [8], Cut-
mix data augmentation [9, 17] and label smoothing [9] to
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Table 1. CIFAR-10: Standard Adversarial Training using
Large-ε: Performance (%) of various existing Defenses trained us-
ing ε = 8/255 or 16/255 against attacks bound within ε = 8/255
and 16/255. A large drop in clean accuracy is observed with ex-
isting approaches [7, 16, 18, 19] when trained using perturbations
with ε = 16/255.

Method Attack ε
(Training)

Clean
Acc

GAMA
(8/255)

AA
(8/255)

GAMA
(16/255)

Square
(16/255)

TRADES 8/255 80.53 49.63 49.42 19.27 27.82
TRADES 16/255 75.30 35.64 35.12 10.10 18.87
AWP 8/255 80.47 50.06 49.87 19.66 28.51
AWP 16/255 71.63 40.85 40.55 15.92 24.16
PGD-AT 8/255 81.12 49.03 48.58 15.77 26.47
PGD-AT 16/255 64.93 46.66 46.21 26.73 32.25
FAT 8/255 84.36 48.41 48.14 15.18 25.07
FAT 16/255 75.27 47.68 47.34 22.93 29.47
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Figure 1. Issues with Standard Adversarial Training at Large-
ε: An adversarial example generated from the original image of a
frog looks partially like a deer at an ℓ∞ bound of 16/255, but is
trained to predict the true label, Frog. This induces a conflicting
objective, leading to a large drop in clean accuracy.

Table 2. Comparison with existing methods: Performance (%) of the proposed defense OA-AT when compared to baselines against
the attacks, GAMA-PGD100 [13], AutoAttack (AA) [4] and an ensemble of Square [1] and Ray-S [2] attacks (SQ+RS), with different ε
bounds. Sorted by AutoAttack (AA) accuracy at ε = 8/255 for CIFAR-10, CIFAR-100 and Imagenette, and 4/255 for SVHN.

(a) CIFAR-10, SVHN

Metrics of interest Others

Method Clean
GAMA
8/255

AA
8/255

SQ+RS
16/255

GAMA
16/255

AA
16/255

CIFAR-10 (ResNet-18), 110 epochs

FAT 84.36 48.41 48.14 23.22 15.18 14.22
PGD-AT 79.38 49.28 48.68 25.43 18.18 17.00
AWP 80.32 49.06 48.89 25.99 19.17 18.77
ATES 80.95 49.57 49.12 26.43 18.36 16.30
TRADES 80.53 49.63 49.42 26.20 19.27 18.23
ExAT + PGD 80.68 50.06 49.52 25.13 17.81 19.53
ExAT + AWP 80.18 49.87 49.69 27.04 20.04 16.67
AWP 80.47 50.06 49.87 27.20 19.66 19.23
Ours 80.24 51.40 50.88 29.56 22.73 22.05

CIFAR-10 (ResNet-34), 110 epochs

AWP 83.89 52.64 52.44 27.69 20.23 19.69
OA-AT (Ours) 84.07 53.54 53.22 30.76 22.67 22.00

CIFAR-10 (WRN-34-10), 200 epochs

AWP 85.36 56.34 56.17 30.87 23.74 23.11
OA-AT (Ours) 85.32 58.48 58.04 35.31 26.93 26.57

SVHN (PreActResNet-18), 110 epochs

Method Clean
GAMA
4/255

AA
4/255

SQ+RS
12/255

GAMA
12/255

AA
12/255

AWP 91.91 75.92 75.72 35.49 30.70 30.31
OA-AT (Ours) 94.61 78.37 77.96 39.24 34.25 33.63

(b) CIFAR-100, ImageNette

Metrics of interest Others

Method Clean
GAMA
8/255

AA
8/255

SQ+RS
16/255

GAMA
16/255

AA
16/255

CIFAR-100 (ResNet-18), 110 epochs

AWP 58.81 25.51 25.30 11.39 8.68 8.29
AWP+ 59.88 25.81 25.52 11.85 8.72 8.28
OA-AT (no LS) 60.27 26.41 26.00 13.48 10.47 9.95
OA-AT (Ours) 61.70 27.09 26.77 13.87 10.40 9.91

CIFAR-100 (PreActResNet-18), 200 epochs

AWP 58.85 25.58 25.18 11.29 8.63 8.19
AWP+ 62.11 26.21 25.74 12.23 9.21 8.55
OA-AT (Ours) 62.02 27.45 27.14 14.52 10.64 10.10

CIFAR-100 (WRN-34-10), 110 epochs

AWP 62.41 29.70 29.54 14.25 11.06 10.63
AWP+ 62.73 29.92 29.59 14.96 11.55 11.04
OA-AT (no LS) 65.22 30.75 30.35 16.77 12.65 11.95
OA-AT (Ours) 65.73 30.90 30.35 17.15 13.21 12.01

Imagenette (ResNet-18), 110 epochs

Method Clean
GAMA
8/255

AA
8/255

SQ+RS
16/255

GAMA
16/255

AA
16/255

AWP 82.73 57.52 57.40 42.52 29.14 28.86
OA-AT (Ours) 82.98 59.51 59.31 48.01 48.66 31.78

achieve enhanced robust performance on base defenses such
as PGD-AT [7] and TRADES [18]. We utilize some of
these methods in our approach, and also present improved

baselines by combining AWP-TRADES [16] with these en-
hancements.

Robustness against large perturbation attacks:



Table 3. CIFAR-10, CIFAR-100: Ablation experiments on ResNet-18 architecture (E1-E7) and WideResNet-34-10 (F1-F2) architecture
to highlight the importance of various aspects in the proposed defense OA-AT. Performance (%) against attacks with different ε bounds is
reported.

CIFAR-10 CIFAR-100

Method Clean GAMA
(8/255)

GAMA
(16/255)

Square
(16/255) Clean GAMA

(8/255)
GAMA

(16/255)
Square
(16/255)

E1: OA-AT (Ours) 80.24 51.40 22.73 31.16 60.27 26.41 10.47 14.60
E2: LPIPS weight = 0 78.47 50.60 24.05 31.37 58.47 25.94 10.91 14.66
E3: Alpha = 1 79.29 50.60 23.65 31.23 58.84 26.15 10.97 14.89
E4: Alpha = 1, LPIPS weight = 0 77.16 50.49 24.93 32.01 57.77 25.92 11.33 15.03
E5: Using Current model (without WA) for LPIPS 80.50 50.75 22.90 30.76 59.54 26.23 10.50 14.86
E6: Without 2*eps perturbations for AWP 79.96 50.50 22.61 30.60 60.18 26.27 10.15 14.20
E7: Maximizing KL div in the AWP step 81.19 49.77 21.17 29.39 59.48 25.03 7.93 13.34

F1: OA-AT (Ours) 85.32 58.48 26.93 36.93 65.73 30.90 13.21 18.47
F2: LPIPS weight = 0 83.47 57.58 27.21 36.68 63.16 30.22 13.59 18.42
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Figure 3. Oracle-Invariant adversarial examples generated using the LPIPS based PGD attack across various perturbation bounds. White-
box attacks and predictions on the model trained using the proposed OA-AT defense on the CIFAR-10 dataset with ResNet-18 architecture
are shown: (a) Original Unperturbed image, (b, h, k) Adversarial examples generated using the standard PGD 10-step attack, (d, f, i, j, l,
m) LPIPS based PGD attack generated within perturbation bounds of 16/255 (d, f), 24/255 (i, j) and 32/255 (l, m) by setting the value of
λLPIPS to 1 and 2, (c, e, g) Perturbations corresponding to (b), (d) and (f) respectively.

Shaeiri et al. [11] demonstrate that the standard formula-
tion of adversarial training is not well-suited for achieving
robustness at large perturbations, as the loss saturates very
early. The authors propose Extended Adversarial Training
(ExAT), where a model trained on low-magnitude pertur-
bations (ε = 8/255) is fine-tuned with large magnitude
perturbations (ε = 16/255) for just 5 training epochs, to
achieve improved robustness at large perturbations. The au-
thors also discuss the use of a varying epsilon schedule to
improve training convergence. Friendly Adversarial Train-

ing (FAT) [19] performs early-stopping of an adversarial at-
tack by thresholding the number of times the model mis-
classifies the image during attack generation. The threshold
is increased over training epochs to increase the strength of
the attack over training. Along similar lines, Sitawarin et
al. [12] propose Adversarial Training with Early Stopping
(ATES), which performs early stopping of a PGD attack
based on the margin (difference between true and maximum
probability class softmax outputs) of the perturbed image
being greater than a threshold that is increased over epochs.
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Figure 4. Results across variation in training εmax: While the proposed approach works best at moderate-ε bounds such as 16/255 on
CIFAR-10, we observe that it outperforms the baseline for various εmax values ≥ 8/255 as well.
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Figure 5. Square attack: Adversarially attacked images (b, c,
d, f) and the corresponding perturbations (e, g) for various ℓ∞
bounds generated using the gradient-free random search based at-
tack Square [1]. The clean image is shown in (a). Attacks are
generated from a model trained using the proposed Oracle-Aligned
Adversarial Training (OA-AT) algorithm on CIFAR-10. Prediction
of the same model is printed above each image.
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Figure 6. RayS attack: Adversarially attacked images (b, c, d, f)
and the corresponding perturbations (e, g) for various ℓ∞ bounds
generated using the gradient-free binary search based attack RayS
[2]. The clean image is shown in (a). Attacks are generated from
a model trained using the proposed Oracle-Aligned Adversarial
Training (OA-AT) algorithm on CIFAR-10. Prediction of the same
model is printed above each image.

We compare against these methods and improve upon them
significantly using our proposed approach.

2. Ablation Study

In order to study the impact of different components of
the proposed defense, we present a detailed ablative study
using ResNet-18 models in Table-3. We present results on
the CIFAR-10 and CIFAR-100 datasets, with E1 represent-
ing the proposed approach. First, we study the efficacy of
the LPIPS metric in generating Oracle-Invariant attacks. In
experiment E2, we train a model without LPIPS by setting
its coefficient to zero. While the resulting model achieves

a slight boost in robust accuracy at ε = 16/255 due to
the use of stronger attacks for training, there is a consid-
erable drop in clean accuracy, and a corresponding drop in
robust accuracy at ε = 8/255 as well. We observe a simi-
lar trend by setting the value of α to 1 as shown in E3, and
by combining E2 and E3 as shown in E4. We note that E4
is similar to standard adversarial training, where the model
attempts to learn consistent predictions in the ε ball around
every data sample. While this works well for large ε attacks
(ε = 16/255), it leads to poor clean accuracy.

As discussed in Sec.3 of the Main paper, we maximize
loss on xi + 2 · δ̃i (where δ̃i is the attack) in the additional
weight perturbation step. We present results by using the



standard ε limit for the weight perturbation step as well,
in E6. This leads to a drop across all metrics, indicating
the importance of using large magnitude perturbations in
the weight perturbation step for producing a flatter loss sur-
face that leads to better generalization to the test set. Dif-
ferent from the standard TRADES formulation, we maxi-
mize Cross-Entropy loss for attack generation in the pro-
posed method. From E7, we note that the use of KL di-
vergence leads to a drop in robust accuracy since the KL
divergence based attack is weaker. This is consistent with
the observation by Gowal et al. [5]. However, on the SVHN
dataset, we find that the use of KL divergence based attack
results in a significant improvement in clean accuracy, lead-
ing to better robust accuracy as well. We therefore utilize
the KL divergence loss for attack generation on the SVHN
dataset.
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