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Abstract

The vulnerability of Deep Neural Networks to Adver-
sarial Attacks has fuelled research towards building ro-
bust models. While most Adversarial Training algorithms
aim at defending attacks constrained within low magnitude
Lp norm bounds, real-world adversaries are not limited by
such constraints. In this work, we aim to achieve adversar-
ial robustness within larger bounds, against perturbations
that may be perceptible, but do not change human (or Ora-
cle) prediction. The presence of images that flip Oracle pre-
dictions and those that do not, makes this a challenging set-
ting for adversarial robustness. We discuss the ideal goals
of an adversarial defense algorithm beyond perceptual lim-
its, and further highlight the shortcomings of naively ex-
tending existing training algorithms to higher perturbation
bounds. In order to overcome these shortcomings, we pro-
pose a novel defense, Oracle-Aligned Adversarial Training
(OA-AT), to align the predictions of the network with that
of an Oracle during adversarial training. The proposed ap-
proach achieves state-of-the-art performance at large ep-
silon bounds (such as an L-inf bound of 16/255) while out-
performing existing defenses at standard bounds (8/255) as
well. The proposed approach generalizes to attacks that
are unseen during training as well, such as other Lp norm
bound attacks, common corruptions and recolor attacks.

1. Introduction

Deep Neural Networks are vulnerable to Adversarial At-
tacks, which are perturbations crafted with an intention to
fool the network [14]. In a classification setting, Adversar-
ial attacks can flip the prediction of a network to even unre-
lated classes, while causing no change in a human’s predic-
tion (Oracle label). The definition of adversarial attacks in-
volves the prediction of an Oracle, making it challenging to
formalize threat models for the training and verification of
adversarial defenses. The widely used convention that over-
comes this challenge is the ℓp norm based threat model with
low-magnitude bounds to ensure imperceptibility [2,7]. For
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Figure 1. Perturbations within different threat models: Adver-
sarial images (b, c, e, g, i, j) and perturbations (d, f, h) along with
the corresponding clean image (a) for various ℓ∞ norm bounds on
CIFAR-10. Attacks are generated from an Adversarially Trained
model (AT) or a Normally Trained model (NT) using the gradient-
based attack GAMA-PGD [13] or the Random-search based attack
Square [1]. The medium-magnitude threat model is challenging
since it consists of attacks which are Oracle-Invariant and partially
Oracle-Sensitive.

example, attacks constrained within an ℓ∞ norm of 8/255
on the CIFAR-10 dataset are imperceptible to the human
eye as shown in Fig.1(b), ensuring that the Oracle label is
unchanged. The goal of Adversarial Training within such a
threat model is to ensure that the prediction of the model is
consistent within the considered perturbation radius ε, and
matches the label associated with the unperturbed image.

While low-magnitude ℓp norm based threat models form
a crucial subset of the widely accepted definition of adver-
sarial attacks [6], they are not sufficient, as there exist valid
attacks at higher perturbation bounds as well, as shown in
Fig.1(c) and (e). However, the challenge at large pertur-
bation bounds is the existence of attacks that can flip Or-
acle labels as well [15], as shown in Fig.1(g), (i) and (j).
Naively scaling existing Adversarial Training algorithms to
large perturbation bounds would enforce consistent labels
on images that flip the Oracle prediction as well, leading to
a conflict in the training objective as shown in Fig.1 of the
Supplementary. This results in a large drop in clean accu-



racy, as shown in Table-1 of the Supplementary. This has
triggered interest towards developing perceptually aligned
threat models, and defenses that are robust under these set-
tings [10]. However, finding a perceptually aligned metric
is as challenging as building a network that can replicate
oracle predictions [15]. Thus, it is crucial to investigate ad-
versarial robustness using the well-defined ℓp norm metric
under larger perturbation bounds.

In this work, we aim to improve robustness at larger
epsilon bounds, such as an ℓ∞ norm bound of 16/255
on the CIFAR-10 and CIFAR-100 datasets [8]. We de-
fine this as a moderate-magnitude bound, and discuss the
ideal goals for achieving robustness under this threat model
in Sec.2.2. We further propose a novel defense Oracle-
Aligned Adversarial Training (OA-AT), which attempts to
align the predictions of the network with that of an Oracle,
rather than enforcing all samples within the constraint set
to have the same label as the original image. We demon-
strate superior performance when compared to state-of-the-
art methods [11, 17, 18] at ε = 16/255 while also per-
forming better at ε = 8/255. We achieve improvements
even at larger model capacities such as WideResNet-34-
10, and outperform existing methods on the RobustBench
leaderboard. The proposed approach generalizes remark-
ably well to attacks that are unseen during training as well,
such as other ℓp norm bound perturbations, common cor-
ruptions and recolor attacks. Our code is available here:
https://github.com/val-iisc/OAAT.

2. Preliminaries
2.1. Nomenclature of Adversarial Attacks

Tramer et al. [15] discuss the existence of two types of
adversarial examples: Sensitivity-based examples, where
the model prediction changes while the Oracle prediction
remains the same as the unperturbed image, and Invariance-
based examples, where the Oracle prediction changes while
the model prediction remains unchanged. Models trained
using standard empirical risk minimization are susceptible
to sensitivity-based attacks, while models which are overly
robust to large perturbation bounds could be susceptible to
invariance-based attacks. Since these definitions are model-
specific, we define a different nomenclature which only de-
pends on the input image and the threat model considered:

• Oracle-Invariant set OI(x) is defined as the set of all
images within the bound S(x), that preserve Oracle
label. Oracle is invariant to such attacks:

OI(x) := {x̂ : O(x̂) = O(x), x̂ ∈ S(x)}
• Oracle-Sensitive set OS(x) is defined as the set of all

images within the bound S(x), that flip the Oracle la-
bel. Oracle is sensitive to such attacks:

OS(x) := {x̂ : O(x̂) ̸= O(x), x̂ ∈ S(x)}

2.2. Objectives of the Proposed Defense

Defenses based on the conventional ℓp norm threat
model attempt to train models which are invariant to all
samples within S(x). This is an ideal requirement for low
ε-bound perturbations, where the added noise is impercep-
tible, and hence all samples within the threat model are
Oracle-Invariant. An example of a low ε-bound constraint
set is the ℓ∞ threat model with ε = 8/255 for the CIFAR-
10 dataset, which produces adversarial examples that are
perceptually similar to the corresponding clean images, as
shown in Fig.1(b).

As we move to larger ε bounds, Oracle-labels begin to
change, as shown in Fig.1(g, i, j). For a very high pertur-
bation bound such as 32/255, the changes produced by an
attack are clearly perceptible and in many cases flip the Or-
acle label as well. Hence, robustness at such large bounds
is not of practical relevance. The focus of this work is to
achieve robustness within a moderate-magnitude ℓp norm
bound, where some perturbations look partially modified
(Fig.1(g)), while others look unchanged (Fig.1(c, e)), as
is the case with ε = 16/255 for CIFAR-10. The exis-
tence of attacks that do not significantly change the per-
ception of the image necessitates the requirement of robust-
ness within such bounds, while the existence of partially
Oracle-Sensitive samples makes it difficult to use standard
adversarial training methods on the same. The ideal goals
for training defenses under this moderate-magnitude threat
model are i) Robustness against samples which belong to
OI(x), ii) Sensitivity towards samples which belong to
OS(x), with model’s prediction matching the Oracle label,
iii) No specification on samples which cannot be assigned
an Oracle label. Given the practical difficulty in assigning
Oracle labels during training and evaluation, we consider
the following subset of these ideal goals in this work:

• Robustness-Accuracy trade-off, measured using accu-
racy on clean samples and robustness against valid at-
tacks within the threat model

• Robustness against all attacks within an imperceptible
radius (ε = 8/255 for CIFAR-10), measured using
strong white-box attacks [5, 13]

• Robustness to Oracle-Invariant samples within a larger
radius (ε = 16/255 for CIFAR-10), measured using
gradient-free attacks [1, 3]

3. Proposed Method
In order to achieve the goals discussed in Sec.2.2, we

require to generate Oracle-Sensitive and Oracle-Invariant
samples and impose specific training losses on each of them
individually. Since labeling adversarial samples as Oracle-
Invariant or Oracle-Sensitive is expensive and cannot be
done while training networks, we propose to use attacks
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Figure 2. Oracle-Aligned Adversarial Training: The proposed defense OA-AT involves alternate training on Oracle-Invariant and
Oracle-Sensitive samples. 1) Oracle-Invariant samples are generated by minimizing the LPIPS distance between the clean and perturbed
images in addition to the maximization of the Classification Loss. 2) Oracle-Sensitive samples are trained using a convex combination of
the predictions of the clean image and the perturbed image at a larger perturbation bound as reference in the KL divergence loss.

which ensure a given type of perturbation (OI or OS) by
construction, and hence do not require explicit annotation.

Generation of Oracle-Sensitive examples: Robust mod-
els are known to have perceptually aligned gradients [16].
Adversarial examples generated using a robust model tend
to look like the target (other) class images at large perturba-
tion bounds, as seen in Fig.1(g, i, j). We therefore use large
ε-bound white-box adversarial examples generated from the
model being trained as Oracle-Sensitive samples, and the
model prediction as a proxy to the Oracle prediction.

Generation of Oracle-Invariant examples: While the
strongest Oracle-Invariant examples are generated using the
gradient-free attacks Square [1] and Ray-S [3], they require
a large number of queries (5000 to 10000), which is com-
putationally expensive for use in adversarial training. Fur-
thermore, reducing the number of queries weakens the at-
tack significantly. The most efficient attack that is widely
used for adversarial training is the PGD 10-step attack.
However, it cannot be used for the generation of Oracle-
Invariant samples as gradient-based attacks generated from
adversarially trained models produce Oracle-Sensitive sam-
ples. We propose to use the Learned Perceptual Image Patch
Similarity (LPIPS) measure for the generation of Oracle-
Invariant attacks, as it is known to match well with per-
ceptual similarity based on a study involving human an-
notators [10, 19]. Further, we observe that while the stan-
dard AlexNet model used in prior work [10] fails to distin-
guish between Oracle-Invariant and Oracle-Sensitive sam-
ples, an adversarially trained model is able to distinguish
between the two effectively (Ref: Fig.2 of the Supplemen-
tary). We therefore propose to minimize the LPIPS dis-
tance between natural and perturbed images, in addition
to the maximization of Cross-Entropy loss for attack gen-

Table 1. Comparison with RobustBench Leaderboard [4] Re-
sults: Performance (%) of the proposed method (OA-AT) when
compared to AWP [17], which is the state-of-the-art amongst
methods that do not use additional training data/ synthetic data
on the RobustBench Leaderboard.

Method
Clean
Acc

ℓ∞ (AA)
8/255

ℓ∞ (OI)
16/255

ℓ2 (AA)
ε = 0.5

ℓ2 (AA)
ε = 1

ℓ1 (AA)
ε = 5

ℓ0 (PGD0)
ε = 7

Comm
Corr ReColor ReColour+δ

CIFAR-10 (WRN-34-10)

AWP 85.36 56.17 30.87 60.68 28.86 37.29 39.09 75.83 58.80 25.60
Ours 85.32 58.04 35.31 64.08 34.54 45.72 44.40 76.78 70.50 39.90

CIFAR-100 (WRN-34-10)

AWP 62.73 29.59 14.96 36.62 17.05 21.88 17.40 50.73 37.60 12.40
Ours 65.73 30.35 17.15 37.21 17.41 25.75 29.20 54.88 40.40 20.60

eration: LCE(x, y) − λ · LPIPS(x, x̂). The ideal setting
of λ is the minimum value that transforms attacks from
Oracle-Sensitive to Oracle-Invariant (OI) for majority of the
images. This results in the generation of strong Oracle-
Invariant (OI) attacks. We present Oracle-Invariant exam-
ples for visual inspection in Fig.3 of the Supplementary.

Oracle-Aligned Adversarial Training (OA-AT): The
training algorithm for the proposed defense, Oracle-
Aligned Adversarial Training (OA-AT) is presented in
Algorithm-1 of the Supplementary and illustrated in Fig.2.
The maximum perturbation bound used for attack genera-
tion during training is denoted as εmax. We use the AWP-
TRADES formulation [17, 18] as the base implementation,
with 10 steps of optimization for attack generation and one
additional weight perturbation step. Classification loss on
xi + 2 · δ̃i (where δ̃i is the attack) is maximized in the ad-
ditional weight perturbation step (instead of xi + δ̃i [17]),
in order to achieve better smoothness in the loss surface.
Initially, attacks constrained within a perturbation bound
of εmax/4 upto one-fourth the training epochs (Alg.1 of
the Supplementary, L6-L8). The perturbation bound is in-
creased linearly to εmax at the last epoch alongside a co-



sine learning rate schedule. The use of a fixed epsilon ini-
tially helps in improving the adversarial robustness faster,
while the use of an increasing epsilon schedule later results
in better training stability [12]. We use 5 attack steps upto
εmax/4 to reduce computation, and 10 attack steps later.

Standard adversarial training is implemented upto a per-
turbation bound of 3/4 · εmax, as the attacks in this range
are imperceptible, based on the chosen moderate-magnitude
threat model discussed in Sec.2.2. Beyond this, sepa-
rate training losses are incorporated for Oracle-Invariant
and Oracle-Sensitive samples in alternate training iterations
(Alg.1 of the Supplementary, L9-L15), as shown in Fig.2.
Oracle-Sensitive samples are generated by maximizing the
classification loss in a PGD attack formulation. Rather than
enforcing the predictions of such attacks to be similar to the
original image, we allow the network to be partially sensi-
tive to such attacks by training them to be similar to a con-
vex combination of predictions on the clean image and per-
turbed samples constrained within a bound of εref , which
is chosen to be greater than or equal to εmax (Alg.1 of the
Supplementary, L10). This component of the overall train-
ing loss is shown below:

KL
(
fθ(xi + δ̃i) || α fθ(xi) + (1− α) fθ(xi + δ̂i)

)
(1)

Here δ̃i is the perturbation at the varying epsilon value
ε̃, and δ̂i is the perturbation at εref . This loss formulation
results in better robustness-accuracy trade-off as shown in
E1 versus E3 in Table-3 of the Supplementary. In the alter-
nate iteration, we use the LPIPS metric to efficiently gener-
ate strong Oracle-Invariant attacks during training (Alg.1 of
the Supplementary, L14). We perform exponential weight-
averaging of the network being trained and use this for com-
puting the LPIPS metric for improved and stable results
(E1 versus E2 and F1 versus F2 in Table-3 of the Sup-
plementary). We therefore do not need additional training
or computation time for training this model. We increase
α and λ over training, as the nature of attacks changes
with varying ε̃. The use of both Oracle-Invariant (OI)
and Oracle-Sensitive (OS) samples ensures robustness to
Oracle-Invariant samples while allowing sensitivity to par-
tially Oracle-Sensitive samples.

4. Experiments and Results
We present a detailed comparison with respect to prior

works on the CIFAR-10, CIFAR-100, SVHN and Ima-
genette datasets in Tables-2(a) and (b) of the Supplemen-
tary. We report adversarial robustness against the strongest
known attacks, AutoAttack (AA) [5] and GAMA PGD-100
(GAMA) [13] for ε = 8/255 in order to obtain the worst-
case robust accuracy. For larger bounds such as 12/255 and
16/255, we primarily aim for robustness against an ensem-
ble of the Square [1] and Ray-S [3] attacks, as they gener-

ate strong Oracle-Invariant examples. We observe that the
proposed defense achieves significant and consistent gains
across all metrics specified in Sec.2.2. The proposed ap-
proach outperforms existing defenses by a significant mar-
gin on all four datasets, over different network architectures.

RobustBench Leaderboard Comparisons: As shown
in Table-1, using the proposed method, we obtain a signif-
icant improvement over state-of-the-art results reported on
the RobustBench Leaderboard (AWP) without the use of ad-
ditional/ synthetic data on both CIFAR-10 and CIFAR-100
datasets. We observe that the proposed approach achieves
significant gains against ℓ∞ norm bound attacks at ε =
8/255 and 16/255 that were used for training, as well as
other ℓp norm bound attacks and common corruptions on
both datasets. We also observe significant gains on func-
tional threat models like ReColor [9], where the pixel val-
ues of an image are modified using a single function applied
on all the pixels of the image. Further, combining ℓ∞ at-
tack with ReColor [9] (Recolor + δ) yields a stronger attack,
and the proposed defense OA-AT achieves better robustness
against this attack as well.

The training time of OA-AT is comparable with that of
AWP [17]. On CIFAR-10, OA-AT takes 7 hours 16 min-
utes, while AWP takes 7 hours 27 minutes for 110 epochs
of training on ResNet-18 using a single V100 GPU.

5. Conclusions

In this paper, we investigate robustness at large pertur-
bation bounds in an ℓp norm based threat model. We dis-
cuss the ideal goals of an adversarial defense at large per-
turbation bounds, identify deficiencies of prior works in
this setting and further propose a novel defense, Oracle-
Aligned Adversarial Training (OA-AT) that aligns model
predictions with that of an Oracle during training. The key
aspects of the defense include the use of LPIPS metric for
generating Oracle-Invariant attacks during training, and the
use of a convex combination of clean and adversarial im-
age predictions as targets for Oracle-Sensitive samples. We
achieve state-of-the-art robustness at low and moderate per-
turbation bounds, and a better robustness-accuracy trade-
off. We show the practical applicability of adversarial train-
ing at larger perturbation bounds by demonstrating signif-
icant improvements against common corruptions, other ℓp
norm bound attacks (ℓ2, ℓ1, ℓ0) unseen during training, and
recolor attacks.
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