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A. Adversarial attacks algorithms

We present algorithms for both our PGD (Algorithm 1)
and universal (Algorithm 2) attacks. In both cases we make
use of the PGD adversarial attack scheme [5] to optimize a
single adversarial patch. In each optimization step, we up-
date the patch based on the gradient of the training criterion.
Finally, we return the produced patch which maximized the
evaluation criterion.

Algorithm 1 PGD adversarial attack
Input V O: VO model
Input A: Adversarial patch perturbation
Input (x, y): Trajectory to attack and it’s ground truth

motions
Input (ℓtrain, ℓeval): Train and evaluation loss func-

tions
Input α: Step size for the attack

P ← Uniform(0, 1)
Pbest ← P
Lossbest ← 0
for k = 1 to K do

optimization step:
g ← ∇P ℓtrain(V O(A(x, P )), y)
P ← P + α · sign(g)
P ← clip(P, 0, 1)
evaluate patch:
Loss ← ℓeval(V O(A(x, P )), y)
if Loss > Lossbest then

Pbest ← P
Lossbest ← Loss

end if
end for
return Pbest

B. Experimental setting and VO model

Attack criteria Opt RMS, Eval RMS Opt RMS, Eval MPRMS Opt MPRMS, Eval RMS Opt MPRMS, Eval
MPRMS

Synthetic data

Real data

Figure 6. Visualization of universal adversarial patches. For
each dataset, and optimization and evaluation criteria, we present
the universal adversarial image produced via the in-sample attack
scheme.

Algorithm 2 Universal PGD adversarial attack
Input V O: VO model
Input A: Adversarial patch perturbation
Input (Xtrain, Ytrain): Trajectories training dataset
Input (Xeval, Yeval): Trajectories evaluation dataset
Input (ℓtrain, ℓeval): Training and evaluation loss

functions
Input (Ntrain, Neval): Number of training and

evaluation trajectories
Input α: Step size for the attack

P ← Uniform(0, 1)
Pbest ← P
Lossbest ← 0
for k = 1 to K do

optimization step:
g ← 0
for i = 1 to Ntrain do

ŷtrain,i ← V O(A(xtrain,i, P ))
g ← g +∇P ℓtrain(ŷtrain,i, ytrain,i)

end for
P ← P + α · sign(g)
P ← clip(P, 0, 1)
evaluate patch:
Loss ← 0
for i = 1 to Neval do

ŷeval,i ← V O(A(xeval,i, P ))
Loss ← Loss + ℓeval(ŷeval,i, yeval,i)

end for
if Loss > Lossbest then

Pbest ← P
Lossbest ← Loss

end if
end for
return Pbest

B.1. Experimental setting

In this section we further detail the distinct experimental
settings of in-sample, out-of-sample and closed-loop.

B.1.1 In-Sample

The in-sample setting is used to estimate the effect of uni-
versal and PGD adversarial perturbations on known data.
We train, evaluate and test our attack on the entire dataset.
We then compare the best performing attack to the random
and clean baselines, for both our PGD and universal adver-
sarial attacks.
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B.1.2 Out-Of-Sample

The out-of-sample setting is used to estimate generalization
properties of universal perturbations to unseen data. Our
methodology in this setting is to first split the trajectories
into several folders, each with distinct initial positions of
the contained trajectories. Thereafter, we perform cross-
validation over the folders, where in each iteration a dis-
tinct folder is chosen to be the test set, and another to be
the evaluation set. The training set thus comprises of the
remaining folders. We report the average results over the
test sets. Throughout our experiments, we use 10-fold cross
validation.

B.1.3 Closed-Loop

The closed-loop setting is used to estimate the general-
ization properties of the previously produced adversarial
patches to a closed-loop scheme, in which the outputs of the
VO model are used in a simple navigation scheme. Our nav-
igation scheme is an aerial path follower based on the carrot
chasing algorithm [9]. Given the current pose, target posi-
tion and cruising speed, the algorithm computes a desired
motion toward the target position. We then produce trajec-
tories, each with a distinct initial and target position, with
the motions computed iteratively by the navigation scheme
based on the provided current position. The ground truth
trajectories are computed by providing the current position
in each step as the aggregation of motions computed by the
navigation scheme. The estimated trajectories for a given
patch, clean or adversarial, however, are computed by pro-
viding the current position in each step as the aggregation of
motions estimated by the VO, where the viewpoint in each
step corresponds to the aggregation of motions computed
by the navigation scheme. We chose this navigation scheme
to further assess the incremental effect of our adversarial at-
tacks, as any deviation in the VO estimations directly affects
the produced trajectory.

B.2. VO model

The VO model used in our experiments is the TartanVO
[11], a recent differentiable VO model that achieved state-
of-the-art performance in visual odometry benchmarks.
Moreover, to better generalize to real-world scenarios, the
model was trained over scale-normalized trajectories in di-
verse synthetic datasets. As the robustness of the model im-
proves on scale-normalized trajectories, we supply it with
the scale of the ground truth motions. The assumption of
being aware of the motions’ scale is a reasonable one, as
the scale can be estimated to a reasonable degree in typical
autonomous systems from the velocity. In our experiments,
we found that the model yielded plausible trajectory esti-
mates over the clean trajectories, for both synthetic and real
data.

C. Data generation specifics
In this section we detail and provide specifics for the gen-

eration process of both the synthetic and real datasets.

C.1. Synthetic data

𝐼0– dark albedo patch

𝐼1– bright albedo patch 𝑃 – attack patch

𝐻 𝑃 ∗ 𝐼1 − 𝐼0 + 𝐼0

𝐼 – input frame

𝐻 – patch homography

Blender scene

Patch placement

Figure 7. Synthetic frame generation. The attack patch P is pro-
jected via the homography transformation H and is incorporated
into the scene according to the albedo images I0 and I1.

As mentioned in Sec. 3, The renderer framework used
for the syntetic data is Blender [1]. To accurately estimate
the motions using the VO model, we require photo-realistic
rendering. In addition, the whole scene is altered for each
camera motion, mandating re-rendering for each frame. On-
line rendering is impractical for optimization, in terms of
computational overhead. Offline rendering is sufficient for
our optimization schemes, and only our closed-loop test re-
quires online rendering. We, therefore, produce the data for
optimizing the adversarial patches offline, and make use of
online rendering only for the closed-loop test.

In the offline data generation of each trajectory {It}Lt=0,
we produce {I0t }Lt=0, {I1t }Lt=0, {Ht}Lt=0 , as well as the
ground truth camera motions δt+1

t . For the closed-loop test,
for each initial position, target position and pre-computed
patch P , we compute the ground truth motions δt+1

t and
their estimation by the VO model, as described in Ap-
pendix B.1.3.

Offline rendered data specifics We produced 100 trajec-
tories with a constant linear velocity norm of v = 5[ms ],
and a constant 2D angular velocity sampled from vθ =
N (0, 3)[degs ]. Each trajectory is nearly 10[m] long and con-
tains 60 frames at 30 fps. The trajectories are evenly divided
between 10 initial positions, with the initial positions being
distributed evenly on the ring of a right circular cone with
a semi-vertical angle of 10◦ and a 50[m]-long axis aligned
with the patch’s normal. We used a camera with a horizon-
tal field-of-view (FOV) of 80◦ and 640 × 448 resolution.
The patch is a 30[m] square, occupying, under the above
conditions, an average FOV over the trajectories ranging
from 18.1% to 27.3%, and covering a mean 22.2% of the

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#4

CVPR
#4

CVPR 2022 Submission #4. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

images. To estimate the effect of the patch’s size, which
translates into a ℓ0 limitation on the adversarial attacks, we
also make use of smaller sized patches. The outer margins
of the patch would then be defaulted to the clean I0 image,
and the adversarial image would be projected onto a smaller
sized square, with its center aligned as before.

Closed-loop data specifics Similarly, in the closed-loop
scheme we produced trajectories with the same camera and
patch configuration, the same distribution of initial posi-
tions and with the navigation scheme cruising speed set ac-
cording to the previous linear velocity norm of v = 5[ms ].
Here we, however, produce 10 trajectories by randomly se-
lecting a target position at the proximity of the patch for
each initial position. We then produced the ground truth
and VO trajectories for each patch P as described in Ap-
pendix B.1.3. The trajectories are each 45[m] long and con-
tain 270 frames at 30 fps.

C.2. Real data

(a) (b) (c) (d)

Figure 8. Real dataset frame generation. (a) Original image. (b+c)
Black and white albedo approximations. (d) Adversarial patch
projected onto the scene.

Similarly to the offline synthetic data gener-
ation, for each trajectory {It}Lt=0 we produced
{I0t }Lt=0, {I1t }Lt=0, {Ht}Lt=0 as well as the ground truth
camera motions δt+1

t .
We produced 48 trajectories with a constant veloc-

ity norm of approximately v ≃ 1[ms ]. Each trajec-
tory contained 45 frames at 30 fps with total length l ∼
N (1.56, 0.152)[m]. The trajectories’ initial positions were
distributed evenly on a plane parallel to the patch at a dis-
tance of 7.2[m]. Not including the drone movement model,
the trajectories comprised linear translation toward evenly
distributed target positions at the patch’s plane. We used
a camera with a horizontal FOV of 82.6◦, and 640 × 448
resolution. The patch was a 1.92 × 1.24[m] rectangle, oc-
cupying, under the above conditions, an average FOV over
the trajectories ranging from 6.8% to 11.2%, and covering
a mean 8.8% of the images.

D. Additional experiments

In this section we present additional experimental
results.

In Fig. 9 we show the patch size comparison of the
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Figure 9. A comparison of different patch sizes of the accumu-
lated deviation in distance travelled from the ground-truth trajec-
tories over out-of-sample cross-validation of the synthetic dataset
as a function of the trajectory length. The patches are a 30[m], a
22.5[m], and 18.75[m] squares and occupy a FOV over the trajec-
tories ranging from 18.1%−27.4%, 8.3%−12.6%, 6.1%−9.3%
respectively, and covering a mean 22.2%, 10.2%, 7.5% of the im-
ages. We show a comparison of the deviation in distance travelled
between our best performing universal attacks for each patch and
the clean baseline.

out-of-sample results on the synthetic dataset. Our uni-
versal attacks again showed a substantial increase in the
generated deviation over the clean baseline, however, as
the patch size is reduced, the increase in the generated
deviation becomes less significant. For the 30[m] square
patch, the best performing universal attack generated, after
10[m], a deviation of 61% in distance travelled. For the
same configuration, the best performing universal attack
for the 22.5[m] square patch generated a deviation of 48%
in distance travelled. Regarding the 18.75[m] square patch,
the generated deviation decays significantly with the best
performing universal attack generating, after 10[m], a
deviation of 31% in distance travelled.
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