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Abstract

Deep neural networks are known to be susceptible to
adversarial perturbations – small perturbations that alter
the output of the network and exist under strict norm lim-
itations. While such perturbations are usually discussed
as tailored to a specific input, a universal perturbation
can be constructed to alter the model’s output on a set
of inputs. In this work, we study physical passive patch
adversarial attacks on visual odometry-based autonomous
navigation systems. To the best of our knowledge, we
show for the first time that the error margin of a visual
odometry model can be significantly increased by deploy-
ing patch adversarial attacks in the scene. We provide eval-
uation on synthetic closed-loop drone navigation data and
demonstrate that a comparable vulnerability exists in real
data. A reference implementation of the proposed method
and the reported experiments is provided at https:
/ / github . com / patchadversarialattacks /
patchadversarialattacks.

1. Introduction
Deep neural networks (DNNs) were the first family of

models discovered to be susceptible to adversarial perturba-
tions – small bounded-norm perturbations of the input that
significantly alter the output of the model [3, 10] (methods
for producing such perturbations are referred to as adversar-
ial attacks). Such perturbations are usually discussed as tai-
lored to a specific model and input, however, universal ad-
versarial attacks are another setting where the aim is to pro-
duce an adversarial perturbation for a set of inputs [4,7,13].
Universal perturbations present a more realistic case of ad-
versarial attacks, as awareness of the model’s exact input is
not required.

Monocular visual odometry (VO) models aim to infer
the relative camera motion (position and orientation) be-
tween two corresponding viewpoints. In the present work,
we investigate the susceptibility of VO models to universal
adversarial perturbations, aiming to mislead a correspond-
ing navigation system by disrupting its ability to spatially

*Equal contribution.

position itself in the scene. Previous works that discuss ad-
versarial attacks on regression models mostly discuss stan-
dard adversarial attacks where the perturbation is inserted
directly into a single image [2,6,8,12]. In contrast, we take
into consideration a time evolving process where a physical
passive patch adversarial attack is inserted into the scene
and is perceived differently from multiple viewpoints. This
is a highly realistic settings, as we test the effect of a mov-
ing camera in a perturbed scene, and do not require direct
access to the model’s input. Below, we outline our main
contributions.

Firstly, we produce physical patch adversarial perturba-
tions for VO systems on both synthetic and real data. Our
experiments show that while VO systems are robust to ran-
dom perturbations, they are susceptible to such adversar-
ial perturbations. For a given trajectory containing multiple
frames, our attacks are aimed to maximize the generated de-
viation in the physical translation between the accumulated
trajectory motion estimated by the VO and the ground truth.
We show that inserting a physical passive adversarial patch
into the scene substantially increases the generated devia-
tion.

Secondly, we continue to produce universal physical
patch adversarial attacks, which are aimed at perturbing un-
seen data. We optimize a single adversarial patch on mul-
tiple trajectories and test the attack on out-of-sample un-
seen data. Our experiments show that when used on out-
of-sample data, our universal attacks generalize and again
cause significant deviations in trajectory estimates produced
by the VO system.

Lastly, we further test the robustness of VO systems to
our previously produced universal adversarial attacks in a
closed-loop scheme with a simple navigation scheme, on
synthetic data. Our experiments show that in this case as
well, the universal attacks force the VO system to deviate
from the ground truth trajectory. To the best of our knowl-
edge, ours is the first time the vulnerability of visual navi-
gation systems to adversarial attacks is demonstrated, and,
possibly, the first instance of adversarial attacks on closed-
loop control systems.

The rest of the paper is organized as follows: Sec. 2 de-
scribes our proposed method, Sec. 3 provides our experi-

https://github.com/patchadversarialattacks/patchadversarialattacks
https://github.com/patchadversarialattacks/patchadversarialattacks
https://github.com/patchadversarialattacks/patchadversarialattacks


mental results, and Sec. 4 concludes the paper.

2. Method
2.1. Patch adversarial attack setting

Let I = [0, 1]3×w×h be a normalized RGB image space,
for some width w and height h. For an image I ∈ I, in-
serting a patch image P ∈ I onto a given plane in I would
then be a perturbation A : (I × I)→ I. Let I0, I1 ∈ I be
the black and white albedo images of the patch P as viewed
from viewpoint I , and let H : I → I be the linear homog-
raphy transformation of P to viewpoint I , then:

IP := A(I, P ) = H(P ) ∗ (I1 − I0) + I0 (1)

where ∗ denotes element-wise multiplication.
Let V O : (I × I) → (R3 × so(3)) be a monocu-

lar VO model, i.e., for a given pair of consecutive images
{It, It+1}, it estimates the relative camera motion δt+1

t =
(qt+1

t , Rt+1
t ), where qt+1

t ∈ R3 is the 3D translation and
Rt+1

t ∈ so(3) is the 3D rotation. We define a trajectory
as a set of consecutive images {It}Lt=0, for some length L,
and extend the definition of the monocular visual odometry
to trajectories V O({It}Lt=0) = {V O(It, It+1)}L−1

t=0 . Given
a trajectory {It}Lt=0, with ground truth motions {δt+1

t }L−1
t=0

and a criterion over the trajectory motions ℓ, an adversar-
ial patch perturbation Pa ∈ I aims to maximize the crite-
rion over the trajectory. Similarly, for a set of trajectories
{{Ii,t}Li

t=0}
N−1
i=0 , with corresponding ground truth motions

{{δt+1
i,t }

Li−1
t=0 }

N−1
i=0 , a universal adversarial attack aims to

maximize the sum of the criterion over the trajectories. For-
mally:

Pa = argmax
P∈I

ℓ({V O(A(It, P ))}Lt=0, {δt+1
t }L−1

t=0 ) (2)

Pua = argmax
P∈I

N−1∑
i=0

ℓ({V O(A(Ii,t, P ))}Li
t=0, {δ

t+1
i,t }

Li−1
t=0 )

(3)

For the scope of this paper, the target criterion used
for adversarial attacks is the RMS (root mean square) de-
viation in the 3D physical translation between the accu-
mulated trajectory motion, as estimated by the VO, and
the ground truth. We denote the accumulated motion as
δL0 =

∏L−1
t=0 δt+1

t , where the multiplication of motions is
defined as the matrix multiplication of the corresponding

4 × 4 matrix representation: δt+1
t =

(
Rt+1

t qt+1
t

0 1

)
. The

target criterion is then formulated as:

ℓV O(V O(A({It}Lt=0, P )), {δt+1
t }L−1

t=0 )

= ||q(
L−1∏
t=0

V O(IPt , IPt+1))− q(

L−1∏
t=0

δt+1
t )||2 (4)

where we denote q(δL0 ) = q((qL0 , R
L
0 )) = qL0 .

2.2. Optimization of adversarial patches

We optimize the adversarial patch P via a PGD adver-
sarial attack [5] with ℓinf norm limitation. We limit the
values in P to be in [0, 1]; however, we do not enforce any
additional ϵ limitation, as such would be expressed in the
albedo images. We allow for different training and evalu-
ation criteria, and to enable evaluation on unseen data for
universal attacks, we allow for different training and eval-
uation datasets. In the supplementary material, we provide
algorithms for both our PGD (Algorithm 1) and universal
(Algorithm 2) attacks.

For both optimization and evaluation of attacks we con-
sider one of two criteria. The first criterion, which we de-
note as ℓRMS , is a smoother version of the target crite-
rion ℓV O, in which we sum over partial trajectories with
the same origin as the full trajectory. Similarly, the sec-
ond criterion, which we denote as ℓMPRMS , i.e., mean par-
tial RMS, is to take into account all the partial trajectories.
Nevertheless, we take the mean for each length of partial
trajectories in order to keep the factoring between different
lengths as in ℓRMS . Formally:

ℓRMS(V O(A({It}Lt=0, P )), {δt+1
t }L−1

t=0 )

=

L∑
l=1

ℓV O(V O(A({It}lt=0, P )), {δt+1
t }l−1

t=0) (5)

ℓMPRMS(V O(A({It}Lt=0, P )), {δt+1
t }L−1

t=0 )

=

L∑
l=1

1

L− l + 1

L−l∑
i=0

ℓV O(V O(A({It}i+l
t=i, P )), {δt+1

t }i+l−1
t=i )

(6)

3. Experiments
We now present an empirical evaluation of the proposed

method. We first describe the various experimental set-
tings used for estimating the effect of the adversarial per-
turbations. We continue and describe the methodology for
generation of both the synthetic and real datasets. Finally,
we present our experimental results, first on the synthetic
dataset and afterwards on the real dataset. In the supplemen-
tary material, we further detail the experimental settings and
the data generation as well as discuss the used VO model.

Experimental setting In our experiments, we differenti-
ate between three distinct settings. Firstly, the in-sample
setting used to estimate the effect of PGD and universal ad-
versarial perturbations on known data. Secondly, the out-of-
sample setting used to estimate generalization properties of
universal perturbations to unseen data. Finally, the closed-
loop setting used to estimate the generalization properties
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Figure 1. Accumulated deviation in distance travelled from the
ground-truth trajectories of the synthetic dataset as a function of
the trajectory length. We show a comparison of our best perform-
ing PGD and universal attacks to the clean and random perturba-
tion baselines.

of previously produced adversarial patches to a closed-loop
scheme, in which the outputs of the VO model are used in
a simple navigation scheme. For each experiment we report
the mean and standard deviation of ℓV O between the esti-
mated and ground truth motions over the test trajectories,
compared to the length of the trajectory. In all cases, we
optimize the attacks for k = 100 iterations.

Data Generation The renderer framework used for the
syntetic data is Blender [1], a 3D modeling and render-
ing package. Blender enables photo-realistic rendered im-
ages to be produced from a given 3D scene along with the
ground truth motions of the cameras. In addition, we pro-
duce high quality, occlusion-aware masks, which are then
used to compute the homography transformation H . We
produced the trajectories in an urban 3D scene, as in such
a scenario, GPS reception and accuracy is poor, and au-
tonomous systems rely more heavily on visual odometry
for navigation purposes. The patch is then positioned on a
square plane at the side of one of the buildings, in a manner
that resembles a large advertising board.

In the real data scenario, we situated a DJI Tello drone
inside an indoor arena, surrounded by an Optitrack motion
capture system for recording the ground truth motions. The
patch was positioned on a planar screen at the arena bound-
ary. To compute the homography transformation H , we
designated the patch location in the scene by four Aruco
markers.

3.1. Experimental results

In Fig. 1 we show the in-sample results on the synthetic
dataset. Both our universal and PGD attacks showed a sub-
stantial increase in the generated deviation over the clean

0 2 4 6 8 10
Distance travelled [M]

20

30

40

50

60

RM
SE

 fr
om

 d
ist

an
ce

 tr
av

el
le

d 
 [%

] Synthetic data: Out-of-sample universal attacks

clean I0
PGD opt RMS eval RMS
PGD opt MPRMS eval RMS
PGD opt RMS eval MPRMS
PGD opt MPRMS eval MPRMS

Figure 2. Accumulated deviation in distance travelled from the
ground-truth trajectories over out-of-sample cross-validation of
the synthetic dataset as a function of the trajectory length. We
show a comparison of the deviation in distance travelled between
our universal attacks and the clean baseline.

and random baselines. The best PGD attack generated, af-
ter 10[m], a deviation of 103% in distance travelled. For the
same configuration, the best universal attack generated a de-
viation of 80% in distance travelled. Moreover, the clean I1

and random baselines show a slight decrease in the gener-
ated deviation over the clean I0 results, including the ran-
dom permutations of the best universal patch. This suggests
that the VO model is affected by the structure of the adver-
sarial patch rather than simply by the color scheme.

In Fig. 2 we show the out-of-sample results on the syn-
thetic dataset. Our universal attacks again showed a sub-
stantial increase in the generated deviation over the clean
baseline, with the best universal attack generating, after
10[m], a deviation of 61% in distance travelled.

In Fig. 3 we show the closed-loop results on the syn-
thetic dataset. Our universal attacks showed an increase
in the generated deviation over the clean baseline, which,
however, was not as substantial as before as the baseline’s
generated deviation is already quite significant. The best
performing universal attack generated, after 45[m], a devi-
ation of 71%, in distance travelled.

In Fig. 4 we show the in-sample results on the real dataset.
Similarly to the synthetic dataset, we see a substantial im-
provement for both our PGD and universal attacks over the
clean I0 baseline, while the clean I1 and random baselines
show a slight decrease. The best PGD attack generated, af-
ter 1.56[m], a deviation of 34% in distance travelled. For
the same configuration, the best universal attack generated
a deviation of 22% in distance travelled.

In Fig. 5 we show the out-of-sample results on the real
dataset. Our universal attacks again showed an increase
in the generated deviation over the clean baseline, with the
best universal attack generating, after 1.56[m], a deviation
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Figure 3. Accumulated deviation in distance travelled from the
ground-truth over closed-loop trajectories of the synthetic dataset
as a function of the trajectory length. We show a comparison of
the deviation in distance travelled between our universal attacks
and the clean baseline.
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Figure 4. Accumulated deviation in distance travelled from the
ground-truth trajectories on the real dataset as a function of the
trajectory length. We show a comparison of our best performing
PGD and universal attacks to the clean and random perturbation
baselines.

of 19% in distance travelled.

4. Conclusions
This paper proposed a novel method for passive patch

adversarial attacks on visual odometry-based navigation
systems. We used homography of the adversarial patch
to different viewpoints to understand how each perceives it
and optimize the patch for entire trajectories. Furthermore,
we limited the adversarial patch in the ℓinf and ℓ0 norms
by taking into account the black and white albedo images
of the patch and the FOV of the patch.

On the synthetic dataset, we showed that the proposed
method could effectively force a given trajectory or set of
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Figure 5. Accumulated deviation in distance travelled from
ground-truth trajectories over out-of-sample cross-validation of
the real dataset as a function of the trajectory length. We show
a comparison of the deviation in distance travelled between our
universal attacks and the clean baseline.

trajectories to deviate from their original path. For a patch
FOV of 22.2%, our PGD attack generated, on a given trajec-
tory, an average deviation, after 10[m], of 103% in distance
travelled, and given the entire trajectory dataset, our univer-
sal attack produced a single adversarial patch that generated
an average deviation, after 10[m], of 80% in distance trav-
elled. Moreover, our universal attack generated, on out-of-
sample data, a deviation, after 10[m], of 61% in distance
travelled and in a closed-loop setting generated an average
deviation, after 45[m], of 71% in distance travelled.

In addition, while less substantial, our results were repli-
cated using the real dataset and a significantly smaller patch
FOV of 8.8%. Nevertheless, when considering the effect
with a larger patch FOV, we can expect a corresponding
increase in the generated deviation. For a given trajec-
tory, our PGD attack generated an average deviation, af-
ter 1.56[m], of 34% in distance travelled. Given the entire
dataset, our universal attack generated an average deviation,
after 1.56[m], of 22% in distance travelled, and on out-of-
sample data generated an average deviation, after 1.56[m],
of 19% in distance travelled.

We conclude that physical passive patch adversarial at-
tacks on vision-based navigation systems could be used to
harm systems in both simulated and real-world scenes. Fur-
thermore, such attacks represents a severe security risk as
they could potentially push an autonomous system onto a
collision course with some object by simply inserting a pre-
optimized patch into a scene.
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